We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 - ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.
Keywords: elliptic optimal control problem, state constraint, a priori error estimates
@article{M2AN_2012__46_5_1107_0,
author = {R\"osch, Arnd and Steinig, Simeon},
title = {\protect\emph{A priori }error estimates for a state-constrained elliptic optimal control problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1107--1120},
year = {2012},
publisher = {EDP Sciences},
volume = {46},
number = {5},
doi = {10.1051/m2an/2011076},
zbl = {1271.65104},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2011076/}
}
TY - JOUR AU - Rösch, Arnd AU - Steinig, Simeon TI - A priori error estimates for a state-constrained elliptic optimal control problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2012 SP - 1107 EP - 1120 VL - 46 IS - 5 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2011076/ DO - 10.1051/m2an/2011076 LA - en ID - M2AN_2012__46_5_1107_0 ER -
%0 Journal Article %A Rösch, Arnd %A Steinig, Simeon %T A priori error estimates for a state-constrained elliptic optimal control problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2012 %P 1107-1120 %V 46 %N 5 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2011076/ %R 10.1051/m2an/2011076 %G en %F M2AN_2012__46_5_1107_0
Rösch, Arnd; Steinig, Simeon. A priori error estimates for a state-constrained elliptic optimal control problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 46 (2012) no. 5, pp. 1107-1120. doi: 10.1051/m2an/2011076
[1] and , Sobolev spaces. Academic Press, San Diego (2007). | Zbl | MR
[2] , and , Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959) 623-727. | Zbl | MR
[3] and , A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal. 4 (1984) 309-325. | Zbl | MR
[4] and , Interpolation spaces. Springer, Berlin (1976). | Zbl
[5] , and , Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176-1194. | Zbl | MR
[6] , Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4 (1986) 1309-1322. | Zbl | MR
[7] and , Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM : COCV 16 (2010) 581-600. | Zbl | MR | Numdam | EuDML
[8] and , Error estimates for the regularization of optimal control problems with pointwise control and state constraints. Z. Anal. Anwendungen 27 (2008) 195-212. | Zbl | MR
[9] , and , Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Problems 24 (2008). | Zbl | MR
[10] , The finite element method for elliptic problems. SIAM Classics In Applied Mathematics, Philadelphia (2002). | Zbl | MR
[11] , and , Finite element error analysis for state-constrained optimal control of the Stokes equations. Control and Cybernetics 37 (2008) 251-284. | Zbl | MR
[12] and , Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 1937-1953. | Zbl | MR
[13] and , Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, edited by K. Kunisch, G. Of and O. Steinbach, Berlin, Heidelberg, Springer-Verlag (2008) 597-604. | Zbl
[14] , Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). | Zbl | MR
[15] , and , The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865-888. | Zbl | MR
[16] , , and , Optimization with PDE Constraints. Springer-Verlag, Berlin (2009). | Zbl | MR
[17] and , Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002) 321-334. | Zbl | MR
[18] , Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control and Cybernetics 37 (2008) 51-85. | Zbl | MR
[19] , and , Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209-228. | Zbl | MR
[20] , and , Optimization of Elliptic Systems. Springer-Verlag, New York (2006). | Zbl | MR
[21] , Zur L∞-Konvergenz linearer finiter elemente beim Dirichlet-problem. Math. Z. 149 (1976) 69-77. | Zbl | MR
[22] and , Existence of regular Lagrange multipliers for elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 45 (2006) 548-564. | Zbl
[23] , Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I : Global estimates. Math. Comput. 67 (1998) 877-899. | Zbl | MR
[24] and , Interior maximum norm estimates for the finite element method. Math. Comput. 31 (1977) 414-442. | Zbl | MR
[25] and , On the quasi-optimality in L∞ of the | Zbl | MR
[26] and , Design of Adaptive Finite Element Software, The Finite Element Toolbox ALBERTA. Springer-Verlag, Berlin (2000). | Zbl | MR
[27] , Regular Lagrange multipliers for problems with pointwise mixed control-state constraints. SIAM J. Optim. 15 (2005) 616-634. | Zbl | MR
[28] , Optimal control of partial differential equations. Amer. Math. Soc., Providence, Rhode Island (2010).
[29] , The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ. 25 (2000) 1771-1808. | Zbl | MR
Cité par Sources :





