In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and well-posedness and superlinear convergence of the Newton method is shown. Numerical examples illustrate the features of this problem and the proposed approach.
Keywords: optimal control, optimal L∞ state constraint, semi-smooth Newton method
@article{M2AN_2011__45_3_505_0,
author = {Clason, Christian and Ito, Kazufumi and Kunisch, Karl},
title = {Minimal invasion: {An} optimal $L^\infty $ state constraint problem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {505--522},
year = {2011},
publisher = {EDP Sciences},
volume = {45},
number = {3},
doi = {10.1051/m2an/2010064},
zbl = {1269.65060},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2010064/}
}
TY - JOUR AU - Clason, Christian AU - Ito, Kazufumi AU - Kunisch, Karl TI - Minimal invasion: An optimal $L^\infty $ state constraint problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 505 EP - 522 VL - 45 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2010064/ DO - 10.1051/m2an/2010064 LA - en ID - M2AN_2011__45_3_505_0 ER -
%0 Journal Article %A Clason, Christian %A Ito, Kazufumi %A Kunisch, Karl %T Minimal invasion: An optimal $L^\infty $ state constraint problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 505-522 %V 45 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2010064/ %R 10.1051/m2an/2010064 %G en %F M2AN_2011__45_3_505_0
Clason, Christian; Ito, Kazufumi; Kunisch, Karl. Minimal invasion: An optimal $L^\infty $ state constraint problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 3, pp. 505-522. doi: 10.1051/m2an/2010064
[1] and , Sobolev Spaces, Pure and Applied Mathematics (Amsterdam) 140. Second edition, Elsevier/Academic Press, Amsterdam (2003). | Zbl | MR
[2] and , Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | Zbl | MR
[3] and , Optimal control of a linear elliptic equation with a supremum norm functional. Optim. Methods Softw. 15 (2001) 299-329. | Zbl | MR
[4] and , Path-following methods for a class of constrained minimization problems in function space. SIAM J. Optim. 17 (2006) 159-187. | Zbl | MR
[5] and , Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control 15. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008). | Zbl | MR
[6] and , First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Program. 16 (1979) 98-110. | Zbl | MR
[7] and , The minimization of a maximum-norm functional subject to an elliptic PDE and state constraints. ZAMM 89 (2009) 536-551. | Zbl | MR
[8] , Elliptic Differential Equations and Obstacle Problems. The University Series in Mathematics, Plenum Press, New York (1987). | Zbl | MR
Cité par Sources :






