We develop a functional analytical framework for a linear peridynamic model of a spring network system in any space dimension. Various properties of the peridynamic operators are examined for general micromodulus functions. These properties are utilized to establish the well-posedness of both the stationary peridynamic model and the Cauchy problem of the time dependent peridynamic model. The connections to the classical elastic models are also provided.
Keywords: peridynamic model, nonlocal continuum theory, well-posedness, Navier equation
@article{M2AN_2011__45_2_217_0,
author = {Du, Qiang and Zhou, Kun},
title = {Mathematical analysis for the peridynamic nonlocal continuum theory},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {217--234},
year = {2011},
publisher = {EDP Sciences},
volume = {45},
number = {2},
doi = {10.1051/m2an/2010040},
mrnumber = {2804637},
zbl = {1269.45005},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2010040/}
}
TY - JOUR AU - Du, Qiang AU - Zhou, Kun TI - Mathematical analysis for the peridynamic nonlocal continuum theory JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 217 EP - 234 VL - 45 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2010040/ DO - 10.1051/m2an/2010040 LA - en ID - M2AN_2011__45_2_217_0 ER -
%0 Journal Article %A Du, Qiang %A Zhou, Kun %T Mathematical analysis for the peridynamic nonlocal continuum theory %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 217-234 %V 45 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2010040/ %R 10.1051/m2an/2010040 %G en %F M2AN_2011__45_2_217_0
Du, Qiang; Zhou, Kun. Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 2, pp. 217-234. doi: 10.1051/m2an/2010040
[1] and , Multiscale Analysis of Heterogeneous Media in the Peridynamic Formulation. IMA preprint, 2241 (2009).
[2] , , , , and , Peridynamics for multiscale materials modeling. J. Phys. Conf. Ser. 125 (2008) 012078.
[3] and , Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems? SIAM J. Numer. Anal. 47 (2009) 844-860. | Zbl | MR
[4] and , A bridging domain method for coupling continua with molecular dynamics. Int. J. Mult. Comp. Eng. 1 (2003) 115-126. | Zbl | MR
[5] and , Atomistic/continuum coupling methods in multi-scale materials modeling. Mod. Simul. Mater. Sci. Engineering 11 (2003) R33-R68.
[6] and , Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54 (2006) 1811-1842. | Zbl | MR
[7] and , Linear Operators, Part I: General Theory. Interscience, New York (1958). | Zbl | MR
[8] and , Analysis and numerical approximation of an integrodifferential equation modelling non-local effects in linear elasticity. Math. Mech. Solids 12 (2005) 363-384. | Zbl | MR
[9] and , The peridynamic equation of motion in nonlocal elasticity theory, in III European Conference on Computational Mechanics - Solids, Structures and Coupled Problems in Engineering, C.A. Mota Soares, J.A.C. Martins, H.C. Rodrigues, J.A.C. Ambrosio, C.A.B. Pina, C.M. Mota Soares, E.B.R. Pereira and J. Folgado Eds., Lisbon, Springer (2006).
[10] and , On the well-posedness of the linear peridynamic model and its convergence towards the Navier equation of linear elasticity. Commun. Math. Sci. 5 (2007) 851-864. | Zbl | MR
[11] , , , , , and , Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Comp. Meth. Appl. Mech. Eng. 196 (2007) 4548-4560. | Zbl | MR
[12] and , A nonlocal vector calculus with application to nonlocal boundary value problems. Preprint (2009). | Zbl | MR
[13] , Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. Springer, Berlin (1985). | Zbl
[14] , The boundary value problems of mathematical physics. Springer-Verlag, New York (1985). | Zbl | MR
[15] and , Statistical coarse-graining of molecular dynamics into peridynamics. Technical Report, SAND2007-6410, Sandia National Laboratories, Albuquerque and Livermore (2007).
[16] and , Force flux and the peridynamic stress tensor. J. Mech. Phys. Solids 56 (2008) 1566-1577. | Zbl | MR
[17] , Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | Zbl
[18] and , The quasicontinuum method: Overview, applications, and current directions. J. Comp.-Aided Mater. Des. 9 (2002) 203-239.
[19] , Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48 (2000) 175-209. | Zbl | MR
[20] , Linearized theory of peridynamic states. Sandia National Laboratories, SAND (2009) 2009-2458. | Zbl | MR
[21] and , Convergence of peridynamics to classical elasticity theory. J. Elasticity 93 (2008) 13-37. | Zbl | MR
[22] , , and , Crack nucleation in a peridynamic solid. Preprint (2009).
[23] and , The effect of long-range forces on the dynamics of a bar. J. Mech. Phys. Solids 53 (2005) 705-728. | Zbl | MR
[24] and , Mathematical and Numerical Analysis of Peridynamic Models with Nonlocal Boundary Conditions. SIAM J. Numer. Anal. (submitted). | Zbl | MR
Cité par Sources :






