This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law on a closed riemannian manifold For an initial value in BV() we will show that these schemes converge with a convergence rate towards the entropy solution. When is -dimensional the schemes are TVD and we will show that this improves the convergence rate to
Keywords: finite volume method, conservation law, curved manifold
@article{M2AN_2009__43_5_929_0,
author = {Giesselmann, Jan},
title = {A convergence result for finite volume schemes on riemannian manifolds},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {929--955},
year = {2009},
publisher = {EDP Sciences},
volume = {43},
number = {5},
doi = {10.1051/m2an/2009013},
mrnumber = {2559739},
zbl = {1173.74454},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2009013/}
}
TY - JOUR AU - Giesselmann, Jan TI - A convergence result for finite volume schemes on riemannian manifolds JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 929 EP - 955 VL - 43 IS - 5 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2009013/ DO - 10.1051/m2an/2009013 LA - en ID - M2AN_2009__43_5_929_0 ER -
%0 Journal Article %A Giesselmann, Jan %T A convergence result for finite volume schemes on riemannian manifolds %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 929-955 %V 43 %N 5 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2009013/ %R 10.1051/m2an/2009013 %G en %F M2AN_2009__43_5_929_0
Giesselmann, Jan. A convergence result for finite volume schemes on riemannian manifolds. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 5, pp. 929-955. doi: 10.1051/m2an/2009013
[1] , and , Hyperbolic conservation laws on manifolds: total variation estimates and the finite volume method. Methods Appl. Anal. 12 (2005) 291-323. | Zbl | MR
[2] and , Well-posedness theory for geometry compatible hyperbolic conservation laws on manifolds. Ann. H. Poincaré Anal. Non Linéaire 24 (2007) 989-1008. | Zbl | MR | Numdam
[3] , and , Logically rectangular grids and finite volume methods for PDEs in circular and spherical domains. SIAM Rev. 50 (2008) 723-752. Available at http://www.amath.washington.edu/rjl/pubs/circles. | Zbl | MR
[4] and , The emergence of jets and vortices in freely evolving, shallow-water turbulence on a sphere. Phys. Fluids 8 (1996) 1531-1552. | Zbl | MR
[5] and , A “shallow-water” theory for the sun's active longitudes. Astrophys. J. Lett. 635 (2005) L193-L196.
[6] , Riemannian geometry, Mathematics: Theory & Applications. Birkhäuser Boston Inc., Boston, USA (1992). | Zbl | MR
[7] , , and , Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563-594. | Zbl | MR
[8] , Numerical hydrodynamics and magnetohydrodynamics in general relativity. Living Rev. Relativ. 11 (2008) 7. URL (cited on June 8, 2009): http://www.livingreviews.org/lrr-2008-7. | Zbl
[9] , Magnetohydrodynamic “shallow-water” equations for the solar tachocline. Astrophys. J. Lett. 544 (2000) L79-L82.
[10] , Lagrange-Galerkin methods on spherical geodesic grids. J. Comput. Phys. 136 (1997) 197-213. | Zbl | MR
[11] , High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on a rotating sphere. J. Comput. Phys. 214 (2006) 447-465. | Zbl | MR
[12] , and , Spontaneous formation of equatorial jets in freely decaying shallow water turbulence. Phys. Fluids 11 (1999) 1272-1274. | Zbl
[13] , Riemannian Geometry and Geometric Analysis. Springer Universitext, Springer (2002). | Zbl | MR
[14] , and , Spatial discretization of the shallow water equations in spherical geometry using osher's scheme. J. Comput. Phys. 165 (2000) 542-565. | Zbl
[15] and , Numerical hydrodynamics in special relativity. Living Rev. Relativ. 6 (2003) 7. URL (cited on June 8, 2009): http://www.livingreviews.org/lrr-2003-7. | Zbl | MR
[16] , , and , Heat semigroup and functions of bounded variation on Riemannian manifolds. J. reine angew. Math. 613 (2007) 99-119. | Zbl | MR
[17] , and , A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Q. J. R. Meteorolog. Soc. 122 (1996) 959-982.
[18] , and , The cubed sphere: A new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124 (1996) 93-114. | Zbl | MR
[19] , A wave propagation algorithm for hyperbolic systems on the sphere. J. Comput. Phys. 213 (2006) 629-658. | Zbl | MR
[20] , and , A wave propagation algorithm for hyperbolic systems on curved manifolds. J. Comput. Phys. 199 (2004) 631-662. | Zbl | MR
[21] , and , “Shallow-water”“Shallow-water” magnetohydrodynamic waves in the solar tachocline. Astrophys. J. Lett. 551 (2001) L185-L188.
[22] , , and , Observation of diffraction-free propagation of surface acoustic waves around a homogeneous isotropic solid sphere. Appl. Phys. Lett. 77 (2000) 2926-2928.
Cité par Sources :





