A new Schwarz method for nonlinear systems is presented, constituting the multiplicative variant of a straightforward additive scheme. Local convergence can be guaranteed under suitable assumptions. The scheme is applied to nonlinear acoustic-structure interaction problems. Numerical examples validate the theoretical results. Further improvements are discussed by means of introducing overlapping subdomains and employing an inexact strategy for the local solvers.
Keywords: Schwarz method, fluid-structure interaction, coupled problems, nonlinear elasticity, nonlinear acoustics, elasto-acoustic
@article{M2AN_2009__43_3_487_0,
author = {Ernst, Roland and Flemisch, Bernd and Wohlmuth, Barbara},
title = {A multiplicative {Schwarz} method and its application to nonlinear acoustic-structure interaction},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {487--506},
year = {2009},
publisher = {EDP Sciences},
volume = {43},
number = {3},
doi = {10.1051/m2an/2009010},
mrnumber = {2536246},
zbl = {1165.74017},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2009010/}
}
TY - JOUR AU - Ernst, Roland AU - Flemisch, Bernd AU - Wohlmuth, Barbara TI - A multiplicative Schwarz method and its application to nonlinear acoustic-structure interaction JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 487 EP - 506 VL - 43 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2009010/ DO - 10.1051/m2an/2009010 LA - en ID - M2AN_2009__43_3_487_0 ER -
%0 Journal Article %A Ernst, Roland %A Flemisch, Bernd %A Wohlmuth, Barbara %T A multiplicative Schwarz method and its application to nonlinear acoustic-structure interaction %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 487-506 %V 43 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2009010/ %R 10.1051/m2an/2009010 %G en %F M2AN_2009__43_3_487_0
Ernst, Roland; Flemisch, Bernd; Wohlmuth, Barbara. A multiplicative Schwarz method and its application to nonlinear acoustic-structure interaction. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 3, pp. 487-506. doi: 10.1051/m2an/2009010
[1] , On convergence of the additive Schwarz preconditioned inexact Newton method. SIAM J. Numer. Anal. 43 (2005) 1850-1871. | Zbl | MR
[2] , and , Finite element approximation of a displacement formulation for time-domain elastoacoustic vibrations. J. Comput. Appl. Math. 152 (2003) 17-34. | Zbl | MR
[3] , and , Domain decomposition by the mortar element method, in Asymptotic and numerical methods for partial differential equations with critical parameters (Beaune, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 384, Kluwer Acad. Publ., Dordrecht (1993) 269-286. | Zbl | MR
[4] , and , A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. XI (Paris, 1989-1991), Pitman Res. Notes Math. Ser. 299, Longman Sci. Tech., Harlow (1994) 13-51. | Zbl | MR
[5] and , Nonlinearly preconditioned inexact Newton algorithms. SIAM J. Sci. Comput. 24 (2002) 183-200. | Zbl | MR
[6] , Mathematical elasticity, Vol. I: Three-dimensional elasticity, Studies in Mathematics and its Applications 20. North-Holland Publishing Co., Amsterdam (1988). | Zbl | MR
[7] and , On the nonlinear domain decomposition method. BIT 37 (1997) 296-311. | Zbl | MR
[8] , and , Elasto-acoustic and acoustic-acoustic coupling on non-matching grids. Int. J. Numer. Meth. Engng. 67 (2006) 1791-1810. | Zbl | MR
[9] and , Nonlinear Acoustics. Academic Press (1998).
[10] , The Finite Element Method. Prentice-Hall, New Jersey (1987). | Zbl | MR
[11] . Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin-Heidelberg-New York (2007). | Zbl
[12] and , Energy-conserving and decaying algorithms in non-linear structural dynamics. Int. J. Numer. Meth. Engng. 45 (1999) 569-599. | Zbl | MR
[13] , Equations of nonlinear acoustics. Soviet Phys.-Acoust. 16 (1971) 467-470.
[14] , A method of computation for structural dynamics. J. Engng. Mech. Div., Proc. ASCE 85 (EM3) (1959) 67-94.
[15] and , Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (1999). | Zbl | MR
[16] , Nichtlineare Funktionalanalysis mit Anwendungen auf partielle Differentialgleichungen. Vorlesung im Sommersemester 2006, IANS preprint 2006/012, Technical report, University of Stuttgart, Germany (2006).
[17] , and , Domain decomposition, Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996). | Zbl | MR
[18] and , Domain decomposition methods - algorithms and theory, Springer Series in Computational Mathematics 34. Springer-Verlag, Berlin (2005). | Zbl | MR
Cité par Sources :






