We propose here a model and a numerical scheme to compute the motion of rigid particles interacting through the lubrication force. In the case of a particle approaching a plane, we propose an algorithm and prove its convergence towards the solutions to the gluey particle model described in [B. Maury, ESAIM: Proceedings 18 (2007) 133-142]. We propose a multi-particle version of this gluey model which is based on the projection of the velocities onto a set of admissible velocities. Then, we describe a multi-particle algorithm for the simulation of such systems and present numerical results.
Keywords: fluid/particle systems, fluid/solid interaction, lubrication force, contacts, Stokes fluid
@article{M2AN_2009__43_1_53_0,
author = {Lefebvre, Aline},
title = {Numerical simulation of gluey particles},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {53--80},
year = {2009},
publisher = {EDP Sciences},
volume = {43},
number = {1},
doi = {10.1051/m2an/2008042},
mrnumber = {2494794},
zbl = {1163.76056},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2008042/}
}
TY - JOUR AU - Lefebvre, Aline TI - Numerical simulation of gluey particles JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 53 EP - 80 VL - 43 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2008042/ DO - 10.1051/m2an/2008042 LA - en ID - M2AN_2009__43_1_53_0 ER -
Lefebvre, Aline. Numerical simulation of gluey particles. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 53-80. doi: 10.1051/m2an/2008042
[1] , and , Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comp. Phys. 147 (1998) 187-218. | Zbl | MR
[2] , , and , Mesure par interférométrie laser du mouvement d'une particule proche d'une paroi. J. Phys. III 1 (1991) 315-330.
[3] and , Hydrodynamic boundary conditions, correlation functions, and Kubo relations for confined fluids. Phys. Rev. E 49 (1994) 3079-3092.
[4] and , Stokesian dynamics. Ann. Rev. Fluid Mech. 20 (1988) 111-157.
[5] and , High order multi-scale wall-laws, part I: The periodic case. Quat. Appl. Math. (to appear) ArXiv:math/0611083v2.
[6] , The motion of suspended particles almost in contact. Int. J. Multiphase Flow 1 (1974) 343-371. | Zbl
[7] and , The slow motion of a sphere through a viscous fluid towards a plane surface - II - Small gap width, including inertial effects. Chem. Engng. Sci. 22 (1967) 1753-1777.
[8] and , Incorporation of lubrication effects into the force-coupling method for particulate two-phase flow. J. Comp. Phys. 189 (2003) 212-238. | Zbl | MR
[9] and , Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59-71. | Zbl | MR
[10] , A new method of determining molecular dimensions. Ann. Phys. Leipsig 19 (1906) 289-306. | JFM
[11] , Correction to my work: a new determination of molecular dimensions. Ann. Phys. Leipsig 34 (1911) 591-592. | JFM
[12] , On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3 (2003) 419-441. | Zbl | MR
[13] , , and , A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 25 (1999) 755-794. | Zbl
[14] , Lack of collision between solid bodies in a 2D constant-density incompressible viscous flow. Comm. Partial Diff. Eq. 32 (2007) 1345-1371. | MR | Zbl
[15] , Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22 (1996) 335-352. | Zbl
[16] and , Simulation of multiple spheres falling in a liquid-filled tube. Comput. Methods Appl. Mech. Engrg. 134 (1996) 351-373. | Zbl | MR
[17] , and , CSiMoon. Calcul scientifique, méthodologie orientée objet et environnement: de l'analyse mathématique à la programmation. Technical report RT 2001-01, Laboratoire de Mathématiques, Université Paris-Sud, France (2004).
[18] , , , , and , Precise measurement of particle-wall hydrodynamic interactions at low Reynolds number using laser interferometry. Phys. Fluids A 5 (1993) 3-12.
[19] , , , and , Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513 (2004) 247-264. | Zbl
[20] , Fluid-Particle simulations with FreeFem++, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 120-132. | MR | Zbl
[21] , Simulation numérique d'écoulements fluide/particules. Ph.D. thesis, Université Paris-Sud XI, Orsay, France (Nov. 2007).
[22] , A many-body lubrication model. C.R. Acad. Sci. Paris 325 (1997) 1053-1058. | Zbl | MR
[23] , Direct simulation of 2D fluid-particle flows in biperiodic domains. J. Comp. Phys. 156 (1999) 325-351. | Zbl | MR
[24] , A time-stepping scheme for inelastic collisions. Numer. Math. 102 (2006) 649-679. | Zbl | MR
[25] , A gluey particle model, in ESAIM: Proceedings 18, J.-F. Gerbeau and S. Labbé Eds. (2007) 133-142. | MR | Zbl
[26] , and , Lubrication approximation in completed double layer boundary element method. Comput. Mech. 26 (2000) 388-397. | Zbl
[27] , , , and , A new formulations for the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000) 1509-1524. | Zbl
[28] , A model for the boundary condition of a porous material. Part 2. J. Fluid Mech. 49 (1971) 327-336. | Zbl
[29] , and , Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161 (2002) 113-147. | Zbl | MR
[30] , and , Distributed Lagrange multiplier method for particulate flows with collisions. Int. J. Multiphase Flow 29 (2003) 495-509. | Zbl
[31] and , Measurement of the hydrodynamic roughness of non colloidal spheres. Phys. Fluids A 1 (1989) 52.
[32] , Rigid-body dynamics with friction and impact. SIAM Rev. 42 (2000) 3-39. | Zbl | MR
[33] , Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499-1532. | Zbl | MR
[34] , Existence of strong solutions for the problem of a rigid-fluid system. C.R. Math. Acad. Sci. Paris 336 (2003) 453-458. | Zbl | MR
[35] , A model for the boundary condition of a porous material. Part 1. J. Fluid Mech. 49 (1971) 319-326. | Zbl
[36] and , Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (2006) 045302(R).
[37] and , Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method. Int. J. Numer. Meth. Fluids 51 (2006) 531-566. | Zbl | MR
Cité par Sources :





