This paper is devoted to the numerical solution of stationary laminar Bingham fluids by path-following methods. By using duality theory, a system that characterizes the solution of the original problem is derived. Since this system is ill-posed, a family of regularized problems is obtained and the convergence of the regularized solutions to the original one is proved. For the update of the regularization parameter, a path-following method is investigated. Based on the differentiability properties of the path, a model of the value functional and a correspondent algorithm are constructed. For the solution of the systems obtained in each path-following iteration a semismooth Newton method is proposed. Numerical experiments are performed in order to investigate the behavior and efficiency of the method, and a comparison with a penalty-Newton-Uzawa-conjugate gradient method, proposed in [Dean et al., J. Non-newtonian Fluid Mech. 142 (2007) 36-62], is carried out.
Keywords: Bingham fluids, variational inequalities of second kind, path-following methods, semi-smooth Newton methods
@article{M2AN_2009__43_1_81_0,
author = {Juan Carlos De Los Reyes and Gonz\'alez, Sergio},
title = {Path following methods for steady laminar {Bingham} flow in cylindrical pipes},
journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
pages = {81--117},
year = {2009},
publisher = {EDP Sciences},
volume = {43},
number = {1},
doi = {10.1051/m2an/2008039},
mrnumber = {2494795},
zbl = {1159.76033},
language = {en},
url = {https://www.numdam.org/articles/10.1051/m2an/2008039/}
}
TY - JOUR AU - Juan Carlos De Los Reyes AU - González, Sergio TI - Path following methods for steady laminar Bingham flow in cylindrical pipes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 81 EP - 117 VL - 43 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/m2an/2008039/ DO - 10.1051/m2an/2008039 LA - en ID - M2AN_2009__43_1_81_0 ER -
%0 Journal Article %A Juan Carlos De Los Reyes %A González, Sergio %T Path following methods for steady laminar Bingham flow in cylindrical pipes %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 81-117 %V 43 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/m2an/2008039/ %R 10.1051/m2an/2008039 %G en %F M2AN_2009__43_1_81_0
Juan Carlos De Los Reyes; González, Sergio. Path following methods for steady laminar Bingham flow in cylindrical pipes. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 81-117. doi: 10.1051/m2an/2008039
[1] , and , Remarks around 50 lines of atlab: short finite element implementation. Numer. Algorithms 20 (1999) 117-137. | Zbl | MR
[2] , Lineare Funktionalanalysis. Springer-Verlag (1999). | Zbl
[3] and , Regularity Results for Nonlinear Elliptic Systems and Applications, Applied Mathematical Sciences 151. Springer-Verlag (2002). | Zbl | MR
[4] , Monotonicity methods in ilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Non-linear Functional Analysis, E. Zarantonello Ed., Acad. Press (1971) 101-156. | Zbl | MR
[5] and , A semi-smooth ewton method for control constrained boundary optimal control of the avier-tokes equations. Nonlinear Anal. 62 (2005) 1289-1316. | Zbl | MR
[6] , and , On the numerical simulation of ingham visco-plastic flow: Old and new results. J. Non-Newtonian Fluid Mech. 142 (2007) 36-62. | Zbl
[7] and , Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976). | Zbl | MR
[8] and , Convex Analysis and Variational Problems. North-Holland Publishing Company, The Netherlands (1976). | Zbl | MR
[9] and , Some remarks on non-Newtonian fluids including nonconvex perturbations of the ingham and owell-yring model for viscoplastic fluids. Math. Models Methods Appl. Sci. 7 (1997) 405-433. | Zbl | MR
[10] and , Regularity results for the quasi-static ingham variational inequality in dimensions two and three. Math. Z. 227 (1998) 525-541. | Zbl | MR
[11] , and , On variational models for quasi-static Bingham fluids. Math. Methods Appl. Sci. 19 (1996) 991-1015. | Zbl | MR
[12] , Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer-Verlag (1984). | Zbl | MR
[13] , and , Analyse numérique des inéquations variationnelles1976). | Zbl
[14] and , Path-following methods for a class of constrained minimization problems in function spaces. SIAM J. Optim. 17 (2006) 159-187. | Zbl | MR
[15] and , Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Contr. Opt. 45 (2006) 1198-1221. | Zbl | MR
[16] and , An infeasible primal-dual algorithm for TV-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28 (2006) 1-23. | Zbl | MR
[17] , and , The primal-dual active set strategy as a semi-smooth ewton method. SIAM J. Optim. 13 (2003) 865-888. | Zbl | MR
[18] and , Application of the augmented agrangian method to steady pipe flows of ingham, asson and erschel-ulkley fluids. J. Non-Newtonian Fluid Mech. 128 (2005) 126-143.
[19] and , Augmented agrangian methods for nonsmooth, convex optimization in ilbert spaces. Nonlinear Anal. 41 (2000) 591-616. | Zbl | MR
[20] and , Semi-smooth ewton methods for variational inequalities of the first kind. ESAIM: M2AN 37 (2003) 41-62. | Zbl | MR | Numdam
[21] , Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag (1971). | Zbl | MR
[22] and , Variational methods in the theory of the fluidity of a viscous-plastic medium. J. Appl. Math. Mech. (P.M.M.) 29 (1965) 468-492. | Zbl
[23] , Flows of materials with yield. J. Rheology 31 (1987) 385-404. | Zbl
[24] , Infinite-dimensional Semi-smooth ewton and Augmented agrangian Methods for Friction and Contact Problems in Elasticity. Ph.D. thesis, Karl-Franzens University of Graz, Graz, Austria (2004).
[25] , Path-following and augmented Lagrangian methods for contact problems in linear elasticity. J. Comp. Appl. Math. 203 (2007) 533-547. | Zbl | MR
[26] and , Newton and quasi-ewton methods for a class of nonsmooth equations and related problems. SIAM J. Optim. 7 (1997) 463-480. | Zbl | MR
[27] , Nonsmooth ewton-like methods for variational inequalities and constrained optimization problems in function spaces. Habilitation thesis, Technische Universität München, Germany (2001-2002).
Cité par Sources :





