We tackle the problem of studying which kind of functions can occur as complexity functions of formal languages of a certain type. We prove that an important narrow subclass of rational languages contains languages of polynomial complexity of any integer degree over any non-trivial alphabet.
Keywords: regular language, finite antidictionary, combinatorial complexity, wed-like automaton
@article{ITA_2009__43_2_269_0,
author = {Shur, Arseny M.},
title = {Polynomial languages with finite antidictionaries},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {269--279},
year = {2009},
publisher = {EDP Sciences},
volume = {43},
number = {2},
doi = {10.1051/ita:2008028},
mrnumber = {2512259},
zbl = {1166.68026},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2008028/}
}
TY - JOUR AU - Shur, Arseny M. TI - Polynomial languages with finite antidictionaries JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2009 SP - 269 EP - 279 VL - 43 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2008028/ DO - 10.1051/ita:2008028 LA - en ID - ITA_2009__43_2_269_0 ER -
%0 Journal Article %A Shur, Arseny M. %T Polynomial languages with finite antidictionaries %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2009 %P 269-279 %V 43 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2008028/ %R 10.1051/ita:2008028 %G en %F ITA_2009__43_2_269_0
Shur, Arseny M. Polynomial languages with finite antidictionaries. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 269-279. doi: 10.1051/ita:2008028
[1] , Uniformly growing -th power free homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | Zbl | MR
[2] and , Combinatorics of words, in Handbook of formal languages, Vol. 1, Chap. 6, edited by G. Rosenberg, A. Salomaa. Springer, Berlin (1997), 329-438. | MR
[3] , and , Automata and forbidden words. Inform. Process. Lett. 67 (1998) 111-117. | MR
[4] and , On subword complexities of homomorphic images of languages. RAIRO-Theor. Inf. Appl. 16 (1982) 303-316. | Numdam | Zbl | MR | EuDML
[5] , Repetition-free words. Theoret. Comput. Sci. 44 (1986) 175-197. | Zbl | MR
[6] , Combinatorial complexity of rational languages. Discr. Anal. Oper. Res., Ser. 1 12 (2005) 78-99 (in Russian). | MR | Zbl
Cité par Sources :





