The (Look and Say) derivative of a word is obtained by writing the number of consecutive equal letters when the word is spelled from left to right. For example, (two , one , two ). We start the study of the behaviour of binary words generated by morphisms under the operator, focusing in particular on the Fibonacci word.
Keywords: look and say sequence, Conway, binary words, Fibonacci word, morphisms, Lyndon factorization
@article{ITA_2008__42_4_729_0,
author = {S\'e\'ebold, Patrice},
title = {Look and {Say} {Fibonacci}},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {729--746},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {4},
doi = {10.1051/ita:2007060},
mrnumber = {2458704},
zbl = {1155.68071},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2007060/}
}
TY - JOUR AU - Séébold, Patrice TI - Look and Say Fibonacci JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 729 EP - 746 VL - 42 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007060/ DO - 10.1051/ita:2007060 LA - en ID - ITA_2008__42_4_729_0 ER -
%0 Journal Article %A Séébold, Patrice %T Look and Say Fibonacci %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 729-746 %V 42 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2007060/ %R 10.1051/ita:2007060 %G en %F ITA_2008__42_4_729_0
Séébold, Patrice. Look and Say Fibonacci. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 4, pp. 729-746. doi: 10.1051/ita:2007060
[1] and , Automatic sequences: theory, applications, generalizations. Cambridge University Press (2003). | Zbl | MR
[2] , Démonstration de l'existence de suites asymétriques infinies. Mat. Sb. 44 (1937) 769-777 (in Russian), 777-779 (French summary). | Zbl | JFM
[3] , Mots sans carré et morphismes itérés. Discrete Math. 29 (1980). 235-244. | Zbl | MR
[4] , Fibonacci words - a survey1986) 13-27. | Zbl
[5] and , A characterization of Sturmian morphisms, MFCS'93, Gdansk (Poland). Lect. Notes Comput. Sci. 711 (1993) 281-290. | Zbl | MR
[6] and , A remark on morphic Sturmian words. RAIRO-Theor. Inf. Appl. 28 (1994) 255-263. | Zbl | MR | Numdam
[7] , , and , Combinatorial properties of smooth infinite words. Theor. Comput. Sci. 352 (2006) 306-317. | Zbl | MR
[8] , Uniform tag sequences. Math. Syst. Theory 6 (1972) 164-192. | Zbl | MR
[9] , The weird and wonderful chemistry of audioactive decay, in Open problems in communication and computation, edited by T.M. Cover, B. Gopinath. Springer-Verlag, New-York (1987) 173-188. See also Eureka 46 (1986) 5-18. | MR
[10] , À propos d'une itération sur chaînes de caractères numériques. Laboratoire d'Analyse Numérique et d'Optimisation. Université Lille 1, Research Report ANO 293 (1993).
[11] , Chaînes alphanumériques ; cycles et points fixes. Laboratoire d'Analyse Numérique et d'Optimisation. Université Lille 1, Research Report ANO 301 (1993).
[12] , Mots autodescriptifs et co-descriptifs. Laboratoire d'Analyse Numérique et d'Optimisation. Université Lille 1, Research Report ANO 332 (1994).
[13] , Combinatorics on Words, Encyclopedia of Mathematics and Applications, Vol. 17. Addison-Wesley, Reading, Mass. (1983). Reprinted in the Cambridge Mathematical Library, Cambridge University Press (1997). | Zbl | MR
[14] , Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Vol. 90. Cambridge University Press (2002). | Zbl | MR
[15] , Lyndon factorization of sturmian words. Discrete Math. 210 (2000) 137-149. | Zbl | MR
[16] , Hiérarchie et fermeture de certaines classes de tag-systèmes. Acta Informatica 20 (1983) 179-196. | Zbl | MR
[17] , On morphisms preserving infinite Lyndon words. Discrete Math. Theor. Comput. Sci. 9 (2007) 89-108. | Zbl | MR
[18] Handbook of Formal Languages, Vol. 1, edited by G. Rozenberg, A. Salomaa. Springer (1997). | Zbl | MR
[19] , On the conjugation of standard morphisms. Theor. Comput. Sci. 195 (1998) 91-109. | Zbl | MR
[20] , About some overlap-free morphisms on a -letter alphabet. J. Autom. Lang. Comb. 7 (2002) 579-597. | Zbl | MR
[21] , , and , Infinite Lyndon words. Inform. Process Lett. 50 (1994) 101-104. | Zbl | MR
Cité par Sources :






