We prove that there exists a structure whose monadic second order theory is decidable, and such that the first-order theory of every expansion of by a constant is undecidable.
Keywords: decidability, first-order theories, monadic second-order theories, maximality, automata, rich words
@article{ITA_2008__42_1_137_0,
author = {B\`es, Alexis and C\'egielski, Patrick},
title = {Weakly maximal decidable structures},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {137--145},
year = {2008},
publisher = {EDP Sciences},
volume = {42},
number = {1},
doi = {10.1051/ita:2007044},
mrnumber = {2382548},
zbl = {1149.03015},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2007044/}
}
TY - JOUR AU - Bès, Alexis AU - Cégielski, Patrick TI - Weakly maximal decidable structures JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2008 SP - 137 EP - 145 VL - 42 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2007044/ DO - 10.1051/ita:2007044 LA - en ID - ITA_2008__42_1_137_0 ER -
%0 Journal Article %A Bès, Alexis %A Cégielski, Patrick %T Weakly maximal decidable structures %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2008 %P 137-145 %V 42 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2007044/ %R 10.1051/ita:2007044 %G en %F ITA_2008__42_1_137_0
Bès, Alexis; Cégielski, Patrick. Weakly maximal decidable structures. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 137-145. doi: 10.1051/ita:2007044
[1] , On a decision method in the restricted second-order arithmetic. In Proc. Int. Congress Logic, Methodology and Philosophy of science, Berkeley 1960. Stanford University Press (1962) 1-11. | MR
[2] , On rich words. In M. Lothaire, editor, Combinatorics on words. Progress and perspectives, Proc. Int. Meet., Waterloo, Canada (1982). Encyclopedia of Mathematics 17, Addison-Wesley (1983) 39-61. | Zbl | MR
[3] and . Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. J. Symbolic Logic 31 (1966) 169-181. | Zbl
[4] and , The first order properties of products of algebraic systems. Fund. Math. 47 (1959) 57-103. | Zbl | MR
[5] and , Infinite Words. Pure Appl. Math. 141 (2004). | Zbl
[6] , Computably-theoretic complexity of countable structures. Bull. Symbolic Logic 8 (2002) 457-477. | Zbl | MR
[7] , The monadic theory of order. Ann. Math. 102 (1975) 379-419. | Zbl | MR
[8] , Decidable expansions of structures. Vopr. Kibern. 134 (1988) 175-179 (in Russian). | Zbl | MR
[9] , The theory of successor with an extra predicate. Math. Ann. 237 (1978) 121-132. | Zbl | MR
[10] , Ehrenfeucht games, the composition method, and the monadic theory of ordinal words. In Structures in Logic and Computer Science, A Selection of Essays in Honor of A. Ehrenfeucht. Lect. Notes Comput. Sci. 1261 (1997) 118-143. | Zbl | MR
Cité par Sources :






