Given a finite alphabet and a language , the centralizer of is defined as the maximal language commuting with it. We prove that if the primitive root of the smallest word of (with respect to a lexicographic order) is prefix distinguishable in then the centralizer of is as simple as possible, that is, the submonoid . This lets us obtain a simple proof of a known result concerning the centralizer of nonperiodic three-word languages.
Keywords: commutation equation, centralizer, lexicographic order
@article{ITA_2006__40_2_295_0,
author = {Massazza, Paolo and Salmela, Petri},
title = {On the simplest centralizer of a language},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {295--301},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {2},
doi = {10.1051/ita:2006014},
mrnumber = {2252640},
zbl = {1112.68097},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2006014/}
}
TY - JOUR AU - Massazza, Paolo AU - Salmela, Petri TI - On the simplest centralizer of a language JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 295 EP - 301 VL - 40 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2006014/ DO - 10.1051/ita:2006014 LA - en ID - ITA_2006__40_2_295_0 ER -
%0 Journal Article %A Massazza, Paolo %A Salmela, Petri %T On the simplest centralizer of a language %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 295-301 %V 40 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2006014/ %R 10.1051/ita:2006014 %G en %F ITA_2006__40_2_295_0
Massazza, Paolo; Salmela, Petri. On the simplest centralizer of a language. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 2, pp. 295-301. doi: 10.1051/ita:2006014
[1] and, Theory of codes. Academic Press, New York (1985). | Zbl | MR
[2] and, On equations for regular languages, finite automata, and sequential networks. Theor. Comp. Sci. 10 (1980) 19-35. | Zbl
[3] , and, The commutation of finite sets: a challenging problem. Theor. Comp. Sci. 273 (2002) 69-79. | Zbl
[4] and, The algebraic theory of context-free languages. Computer Programming and Formal Systems, edited by P. Braffort and D. Hirschberg. North-Holland, Amsterdam (1963) 118-161. | Zbl
[5] , Regular Algebra and Finite Machines. Chapman & Hall, London (1971). | Zbl
[6] and, The branching point approach to Conway's problem, in Formal and Natural Computing, edited by W. Brauer, H. Ehrig, J. Karhumäki, A. Salomaa. Lect. Notes Comput. Sci. 2300 (2002) 69-76. | Zbl
[7] and, Conway's problem for three-word sets. Theor. Comp. Sci. 289 (2002) 705-725. | Zbl
[8] , and, Commutation with codes. Theor. Comp. Sci. 340 (2005) 322-333. | Zbl
[9] , and, Commutation with ternary sets of words. Theory Comput. Syst. 38 (2005) 161-169. | Zbl
[10] , The power of commuting with finite sets of words, in Proc. of STACS 2005. Lect. Notes Comput. Sci. 3404 (2005) 569-580. | Zbl
[11] and, The equation in a free group. Michigan Math. J. 9 (1962) 289-298. | Zbl
[12] , On the equation , in Proc. of WORDS 2005, Publications du Laboratoire de Combinatoire et d'Informatique Mathématique, Montréal 36 (2005) 315-322.
[13] , Codes conjugués. Inform. Control 20 (1972) 222-231. | Zbl
[14] , Codes et motifs. RAIRO-Inf. Theor. Appl. 23 (1989) 425-444. | Zbl | Numdam
Cité par Sources :





