We consider the four families of recognizable, synchronous, deterministic rational and rational subsets of a direct product of free monoids. They form a strict hierarchy and we investigate the following decision problem: given a relation in one of the families, does it belong to a smaller family? We settle the problem entirely when all monoids have a unique generator and fill some gaps in the general case. In particular, adapting a proof of Stearns, we show that it is recursively decidable whether or not a deterministic subset of an arbitrary number of free monoids is recognizable. Also we exhibit a single exponential algorithm for determining if a synchronous relation is recognizable.
Keywords: multitape automata, Presburger arithmetics, decision problems
@article{ITA_2006__40_2_255_0,
author = {Carton, Olivier and Choffrut, Christian and Grigorieff, Serge},
title = {Decision problems among the main subfamilies of rational relations},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {255--275},
year = {2006},
publisher = {EDP Sciences},
volume = {40},
number = {2},
doi = {10.1051/ita:2006005},
mrnumber = {2252638},
zbl = {1112.03008},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2006005/}
}
TY - JOUR AU - Carton, Olivier AU - Choffrut, Christian AU - Grigorieff, Serge TI - Decision problems among the main subfamilies of rational relations JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2006 SP - 255 EP - 275 VL - 40 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2006005/ DO - 10.1051/ita:2006005 LA - en ID - ITA_2006__40_2_255_0 ER -
%0 Journal Article %A Carton, Olivier %A Choffrut, Christian %A Grigorieff, Serge %T Decision problems among the main subfamilies of rational relations %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2006 %P 255-275 %V 40 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2006005/ %R 10.1051/ita:2006005 %G en %F ITA_2006__40_2_255_0
Carton, Olivier; Choffrut, Christian; Grigorieff, Serge. Decision problems among the main subfamilies of rational relations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) no. 2, pp. 255-275. doi: 10.1051/ita:2006005
[1] , Transductions and context-free languages. B.G. Teubner (1979). | Zbl | MR
[2] and, On the inclusion problem for finitely ambiguous rational trace languages. RAIRO: Inform. Théor. Appl. 32 (1998) 79-98. | EuDML
[3] , Automata, Languages and Machines, Vol. A. Academic Press (1974). | Zbl | MR
[4] , and, Sets recognized by -tape automata. J. Algebra 3 (1969) 447-464. | Zbl
[5] and, Rational sets in commutative monoids. J. Algebra 13 (1969) 173-191. | Zbl
[6] and, On Relations Defined by Finite Automata. IBM J. 10 (1965) 47-68. | Zbl
[7] and, Multitape one-way nonwriting automata. J. Comput. Syst. Sci. 2 (1968) 88-101. | Zbl
[8] and, Semigroups, Presburger formulas, and languages. Pacific J. Math. 16 (1966) 285-296. | Zbl
[9] , Subclasses of Presburger arithmetic and the polynomial hierarchy. Theoret. Comput. Sci. 56 (1989) 281-301. | Zbl
[10] , The unsolvability of the equivalence problem for -free ngsm’s with unary input (output) alphabets and application. SIAM J. Comput. 7 (1978) 520-532. | Zbl
[11] , The identity problem for regular events over the direct product of free and cyclic semigroups. Dok. Akad. Nauk Ukrainskoj RSR Ser. A. 6 (1979) 410-413. | Zbl
[12] and, Finite automata and their decision problems. IBM J. Res. Develop (1959) 125-144. | Zbl
[13] , Éléments de théorie des automates. Vuibert Informatique (2003).
[14] , A regularity test for pushdown machines. Inform. Control 11 (1967) 323-340. | Zbl
[15] , Regularity and related problems for deterministic pushdown automata. Inform. Control 22 (1975) 1-10. | Zbl
Cité par Sources :






