We associate with a word on a finite alphabet an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of . Then when we deduce, using the sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.
Keywords: episturmian morphism, Arnoux-Rauzy morphism, palindrome, continued fraction, sturmian word
@article{ITA_2005__39_1_207_0,
author = {Justin, Jacques},
title = {Episturmian morphisms and a {Galois} theorem on continued fractions},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {207--215},
year = {2005},
publisher = {EDP Sciences},
volume = {39},
number = {1},
doi = {10.1051/ita:2005012},
mrnumber = {2132588},
zbl = {1126.68519},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2005012/}
}
TY - JOUR AU - Justin, Jacques TI - Episturmian morphisms and a Galois theorem on continued fractions JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2005 SP - 207 EP - 215 VL - 39 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2005012/ DO - 10.1051/ita:2005012 LA - en ID - ITA_2005__39_1_207_0 ER -
%0 Journal Article %A Justin, Jacques %T Episturmian morphisms and a Galois theorem on continued fractions %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2005 %P 207-215 %V 39 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2005012/ %R 10.1051/ita:2005012 %G en %F ITA_2005__39_1_207_0
Justin, Jacques. Episturmian morphisms and a Galois theorem on continued fractions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) no. 1, pp. 207-215. doi: 10.1051/ita:2005012
[1] , Une caractérisation simple des nombres de Sturm. J. Th. Nombres Bordeaux 10 (1998) 237-241. | Zbl | Numdam
[2] and, Représentation géometrique de suites de complexité . Bull. Soc. Math. France 119 (1991) 199-215. | Zbl | Numdam
[3] , Recent results on extensions of Sturmian words. Internat. J. Algebra Comput. 12 (2002) 371-385. | Zbl
[4] , Autour du système de numération d'Ostrowski. Bull. Belg. Math. Soc. 8 (2001) 209-239. | Zbl
[5] , Théorie des Nombres. Tome 2, Librairie Scient. A. Hermann, Paris (1924). | JFM
[6] and, Harmonic and Gold Sturmian Words, preprint, Dipart. di Mat. G. Castelnuovo, Università degli Studi di Roma La Sapienza, 22/2003 (2003). | Zbl | MR
[7] , and, Fine and Wilf's theorem for three periods and a generalization of Sturmian words. Theor. Comput. Sci. 218 (2001) 83-94. | Zbl
[8] , and, Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci. 255 (2001) 539-553. | Zbl
[9] , Démonstration d'un théorème sur les fractions continues périodiques. Ann. Math. Pures Appl. de M. Gergonne 19 (1829) 294-301. | Numdam
[10] , On a paper by Castelli, Mignosi, Restivo. Theor. Inform. Appl. 34 (2000) 373-377. | Zbl | Numdam
[11] and, Episturmian words and episturmian morphisms. Theor. Comput. Sci. 276 (2002) 281-313. | Zbl
[12] and, Episturmian words: shifts, morphisms and numeration systems. Intern. J. Foundat. Comput. Sci. 15 (2004) 329-348. | Zbl
[13] , Algebraic Combinatorics on Words, edited by M. Lothaire. Cambridge University Press. Encyclopedia of Mathematics 90 (2002). | Zbl | MR
[14] and, On the number of Arnoux-Rauzy words. Acta Arith. 101 (2002) 121-129. | Zbl
[15] and, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM
[16] , Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147-178. | Zbl | Numdam
[17] , Mots infinis en arithmétique, in Automata on infinite words, edited by M. Nivat and D. Perrin. Lect. Notes Comput. Sci. 192 (1985) 165-171. | Zbl
[18] and, A generalization of Sturmian sequences, combinatorial structure and transcendence. Acta Arithmetica 95 (2000) 167-184. | Zbl
[19] and, Frequencies of factors in Arnoux-Rauzy sequences. Acta Arithmetica 96 (2001) 261-278. | Zbl
[20] , Une généralisation du théorème de Lagrange sur le développement en fraction continue. C. R. Acad. Sci. Paris I 327 (1998) 527-530. | Zbl
Cité par Sources :





