The aim of this paper is to study the threshold behavior for the satisfiability property of a random -XOR-CNF formula or equivalently for the consistency of a random Boolean linear system with variables per equation. For we show the existence of a sharp threshold for the satisfiability of a random -XOR-CNF formula, whereas there are smooth thresholds for and .
Keywords: threshold phenomenon, satisfiability, phase transition, random boolean linear systems
@article{ITA_2003__37_2_127_0,
author = {Creignou, Nadia and Daud\'e, Herv\'e},
title = {Smooth and sharp thresholds for random ${k}${-XOR-CNF} satisfiability},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {127--147},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {2},
doi = {10.1051/ita:2003014},
mrnumber = {2015688},
zbl = {1112.68390},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2003014/}
}
TY - JOUR
AU - Creignou, Nadia
AU - Daudé, Hervé
TI - Smooth and sharp thresholds for random ${k}$-XOR-CNF satisfiability
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2003
SP - 127
EP - 147
VL - 37
IS - 2
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/ita:2003014/
DO - 10.1051/ita:2003014
LA - en
ID - ITA_2003__37_2_127_0
ER -
%0 Journal Article
%A Creignou, Nadia
%A Daudé, Hervé
%T Smooth and sharp thresholds for random ${k}$-XOR-CNF satisfiability
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2003
%P 127-147
%V 37
%N 2
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/ita:2003014/
%R 10.1051/ita:2003014
%G en
%F ITA_2003__37_2_127_0
Creignou, Nadia; Daudé, Hervé. Smooth and sharp thresholds for random ${k}$-XOR-CNF satisfiability. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 2, pp. 127-147. doi: 10.1051/ita:2003014
[1] and, Minimal non 2-colorable hypergraphs and minimal unsatisfiable formulas. J. Combin. Theory Ser. A 43 (1986). | Zbl | MR
[2] , and, A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inform. Process. Lett. 8 (1979) 121-123. | Zbl | MR
[3] , Random graphs. Academic Press (1985). | Zbl | MR
[4] , Almost all graphs with 1.44n edges are 3-colorable. Random Struct. Algorithms 2 (1991) 11-28. | Zbl | MR
[5] and, Mick gets some (the odds are on his side), in Proc. of the 33rd Annual Symposium on Foundations of Computer Science. IEEE (1992) 620-627. | Zbl
[6] and, Satisfiability threshold for random XOR-CNF formulæ. Discrete Appl. Math. 96-97 (1999) 41-53. | Zbl | MR
[7] , and, Typical random 3-SAT formulae and the satisfiability threshold, in Proc. of the 11th ACM-SIAM Symposium on Discrete Algorithms, SODA'2000 (2000) 124-126. | Zbl
[8] and, On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 7 (1960) 17-61. | Zbl | MR
[9] and an Appendix by J. Bourgain, Sharp thresholds of graph properties, and the -sat problem. J. Amer. Math. Soc. 12 (1999) 1017-1054. | Zbl | MR
[10] and, Analysis of two simple heuristics on a random instance of k-SAT. J. Algorithms 20 (1996) 312-355. | Zbl | MR
[11] and, The SAT phase transition, in Proc. of the 11th European Conference on Artificial Intelligence (1994) 105-109.
[12] , A threshold for unsatisfiability. J. Comput. System Sci. 53 (1996) 469-486. | Zbl | MR
[13] , Percolation. Springer Verlag (1989). | Zbl
[14] , Poisson convergence and Poisson processes with applications to random graphs. Stochastic Process. Appl. 26 (1987) 1-30. | Zbl | MR
[15] and, Critical behavior in the satisfiability of random Boolean expressions. Science 264 (1994) 1297-1301. | MR
[16] , Random graphs and systems of linear equations in finite fields. Random Struct. Algorithms 5 (1995) 425-436. | Zbl | MR
[17] , Random graphs. Cambridge University Press (1999). | Zbl | MR
[18] and, A threshold effect for systems of random equations of a special form. Discrete Math. Appl. 2 (1992) 563-570. | Zbl | MR
[19] , On the limit distribution of the number of solutions of a random system of linear equations in the class of boolean functions. Theory Probab. Appl. 12 (1967) 47-56. | Zbl | MR
[20] , and, Hard and easy distributions of SAT problems, in Proc. of the 10th National Conference on Artificial Intelligence (1992) 459-465.
[21] and, Statistical mechanics of the random K-sat model. Phys. Rev. E 56 (1997) 1357. | MR
[22] , The complexity of satisfiability problems, in Proceedings 10th STOC, San Diego (CA, USA). Association for Computing Machinery (1978) 216-226. | MR
[23] , On the limit distribution of the number of cycles in a random graph. J. Appl. Probab. 25 (1988) 359-376. | Zbl | MR
Cité par Sources :






