We show that the size of a Las Vegas automaton and the size of a complete, minimal deterministic automaton accepting a regular language are polynomially related. More precisely, we show that if a regular language is accepted by a Las Vegas automaton having states such that the probability for a definite answer to occur is at least , then , where is the number of the states of the minimal deterministic automaton accepting . Earlier this result has been obtained in [2] by using a reduction to one-way Las Vegas communication protocols, but here we give a direct proof based on information theory.
Keywords: Las Vegas automata, information theory
@article{ITA_2003__37_1_39_0,
author = {Hirvensalo, Mika and Seibert, Sebastian},
title = {Lower bounds for {Las} {Vegas} automata by information theory},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {39--49},
year = {2003},
publisher = {EDP Sciences},
volume = {37},
number = {1},
doi = {10.1051/ita:2003007},
mrnumber = {1991750},
zbl = {1084.68061},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita:2003007/}
}
TY - JOUR AU - Hirvensalo, Mika AU - Seibert, Sebastian TI - Lower bounds for Las Vegas automata by information theory JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2003 SP - 39 EP - 49 VL - 37 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita:2003007/ DO - 10.1051/ita:2003007 LA - en ID - ITA_2003__37_1_39_0 ER -
%0 Journal Article %A Hirvensalo, Mika %A Seibert, Sebastian %T Lower bounds for Las Vegas automata by information theory %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2003 %P 39-49 %V 37 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita:2003007/ %R 10.1051/ita:2003007 %G en %F ITA_2003__37_1_39_0
Hirvensalo, Mika; Seibert, Sebastian. Lower bounds for Las Vegas automata by information theory. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 37 (2003) no. 1, pp. 39-49. doi: 10.1051/ita:2003007
[1] and, Elements of Information Theory. John Wiley & Sons, Inc. (1991). | Zbl | MR
[2] ,, and, Las Vegas Versus Determinism for One-way Communication Complexity, Finite Automata, and Polynomial-time Computations. Springer, Lecture Notes in Comput. Sci. 1200 (1997) 117-128. | MR
[3] , personal communication.
[4] , On quantum and probabilistic communication: Las Vegas and one-way protocols, in Proc. of the ACM Symposium on Theory of Computing (2000) 644-651. | MR
[5] , Computational Complexity. Addison-Wesley (1994). | Zbl | MR
[6] , Regular Languages, edited by G. Rozenberg and A. Salomaa. Springer, Handb. Formal Languages I (1997).
Cité par Sources :





