We re-examine previous constructions of infinite binary words containing few distinct squares with the goal of finding the “simplest”, in a certain sense. We exhibit several new constructions. Rather than using tedious case-based arguments to prove that the constructions have the desired property, we rely instead on theorem-proving software for their correctness.
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ita/2021001
@article{ITA_2021__55_1_A5_0,
author = {Gabric, Daniel and Shallit, Jeffrey},
title = {The {Simplest} {Binary} {Word} {With} {Only} {Three} {Squares}},
journal = {RAIRO. Theoretical Informatics and Applications},
year = {2021},
publisher = {EDP-Sciences},
volume = {55},
doi = {10.1051/ita/2021001},
mrnumber = {4245320},
zbl = {1492.68113},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2021001/}
}
TY - JOUR AU - Gabric, Daniel AU - Shallit, Jeffrey TI - The Simplest Binary Word With Only Three Squares JO - RAIRO. Theoretical Informatics and Applications PY - 2021 VL - 55 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ita/2021001/ DO - 10.1051/ita/2021001 LA - en ID - ITA_2021__55_1_A5_0 ER -
Gabric, Daniel; Shallit, Jeffrey. The Simplest Binary Word With Only Three Squares. RAIRO. Theoretical Informatics and Applications, Tome 55 (2021), article no. 3. doi: 10.1051/ita/2021001
[1] , Infinite words containing the minimal number of repetitions. J. Discrete Algorithms 20 (2013) 38–42. | MR | Zbl | DOI
[2] and , Fewest repetitions in infinite binary words. RAIRO: ITA 46 (2012) 17–31. | MR | Zbl | Numdam
[3] , Sur la construction de mots sans carré. Séminaire de Théorie des Nombres (1978–1979) 18.01–18.15. | MR | Zbl
[4] , Axel Thue’s Papers on Repetitions in Words: a Translation. Number 20 in Publications du Laboratoire de Combinatoire et d’Informatique Mathématique. Université du Québec à Montréal (1995).
[5] , , and , Abelian complexity of fixed point of morphism 0↦012, 1↦02, 2↦1. INTEGERS: Elect. J. Combin. Number Theory 14 (2014) #A11 (electronic). | MR | Zbl
[6] , and , Enumeration and decidable properties of automatic sequences. Internat. J. Found. Comp. Sci. 23 (2012) 1035–1066. | MR | Zbl | DOI
[7] , Uniform tag sequences. Math. Systems Theory 6 (1972) 164–192. | MR | Zbl | DOI
[8] , and , On nonrepetitive sequences. J. Combin. Theory Ser. A 16 (1974) 159–164. | MR | Zbl | DOI
[9] and , How many squares must a binary sequence contain ? Electronic J. Combinatorics 2 (1994) #R2. | MR | Zbl | DOI
[10] and , Binary words with few squares. Bull. European Assoc. Theor. Comput. Sci. 89 (2006) 164–166. | MR | Zbl
[11] and , Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (1979). | MR | Zbl
[12] , Automatic theorem proving in Walnut (2016). | arXiv
[13] , A generator of morphisms for infinite words. RAIRO: ITA 40 (2006) 427–441. | MR | Zbl | Numdam
[14] , and , Avoiding large squares in infinite binary words. Theoret. Comput. Sci. 339 (2005) 19–34. | MR | Zbl | DOI
[15] , Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906) 1–22. Reprinted in Selected Mathematical Papers of Axel Thue, edited by T. Nagell, Universitetsforlaget, Oslo (1977) 139–158. | MR | JFM
[16] , Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67. Reprinted in Selected Mathematical Papers of Axel Thue, edited by T. Nagell, Universitetsforlaget, Oslo (1977) 413–478. | JFM
Cité par Sources :
Research of the second author is supported by NSERC grant 2018-04118.





