We construct an infinite word w over the 5-letter alphabet such that for every factor f of w of length at least two, there exists a cyclic permutation of f that is not a factor of w. In other words, w does not contain a non-trivial conjugacy class. This proves the conjecture in Gamard et al. [Theoret. Comput. Sci. 726 (2018) 1–4].
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ita/2020003
Keywords: Combinatorics on words, conjugacy classes
@article{ITA_2020__54_1_A2_0,
author = {Badkobeh, Golnaz and Ochem, Pascal},
title = {Avoiding conjugacy classes on the 5-letter alphabet},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
year = {2020},
publisher = {EDP Sciences},
volume = {54},
doi = {10.1051/ita/2020003},
mrnumber = {4078186},
zbl = {1457.68226},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2020003/}
}
TY - JOUR AU - Badkobeh, Golnaz AU - Ochem, Pascal TI - Avoiding conjugacy classes on the 5-letter alphabet JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2020 VL - 54 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2020003/ DO - 10.1051/ita/2020003 LA - en ID - ITA_2020__54_1_A2_0 ER -
%0 Journal Article %A Badkobeh, Golnaz %A Ochem, Pascal %T Avoiding conjugacy classes on the 5-letter alphabet %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2020 %V 54 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2020003/ %R 10.1051/ita/2020003 %G en %F ITA_2020__54_1_A2_0
Badkobeh, Golnaz; Ochem, Pascal. Avoiding conjugacy classes on the 5-letter alphabet. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 54 (2020), article no. 2. doi: 10.1051/ita/2020003
[1] , and , Growth problems for avoidable words. Theoret. Comput. Sci. 69 (1989) 19–345. | MR | Zbl | DOI
[2] , and , Avoidable patterns in strings of symbols. Pacific J. Math. 85 (1979) 261–294. | MR | Zbl | DOI
[3] and , Iterative Algebras. Algebr. Represent. Theor. 18 (2015) 1533–1546. | MR | Zbl | DOI
[4] , Avoidable formulas in combinatorics on words. Ph.D. thesis, University of California, Los Angeles. Available at http://www.lirmm.fr/~ochem/morphisms/clark˙thesis.pdf (2001). | MR
[5] , , and , Avoidability of circular formulas. Theoret. Comput. Sci. 726 (2018) 1–4. | MR | Zbl | DOI
[6] , and , A generalization of repetition threshold. Theoret. Comput. Sci. 92 (2004) 71–76. | MR
[7] , A generator of morphisms for infinite words. RAIRO: ITA 40 (2006) 427–441. | MR | Zbl | Numdam
[8] , Blocking sets of terms. Math. USSR Sbornik 47 (1984) 353–364. | MR | Zbl | DOI
Cité par Sources :





