Let be two distinct primitive words. According to Lentin−Schützenberger [9], the language contains at most one non-primitive word and if is not primitive, then . In this paper we give a sharper upper bound, namely, where stands for the floor of .
Accepté le :
Keywords: Combinatorics on words, primitive word, primitive root
Echi, Othman 1, 2
@article{ITA_2017__51_3_141_0,
author = {Echi, Othman},
title = {Non-primitive words of the form $\bold{p}\bold{q}^{\bold{m}}$},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {141--166},
year = {2017},
publisher = {EDP Sciences},
volume = {51},
number = {3},
doi = {10.1051/ita/2017012},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2017012/}
}
TY - JOUR
AU - Echi, Othman
TI - Non-primitive words of the form $\bold{p}\bold{q}^{\bold{m}}$
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2017
SP - 141
EP - 166
VL - 51
IS - 3
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/ita/2017012/
DO - 10.1051/ita/2017012
LA - en
ID - ITA_2017__51_3_141_0
ER -
%0 Journal Article
%A Echi, Othman
%T Non-primitive words of the form $\bold{p}\bold{q}^{\bold{m}}$
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2017
%P 141-166
%V 51
%N 3
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/ita/2017012/
%R 10.1051/ita/2017012
%G en
%F ITA_2017__51_3_141_0
Echi, Othman. Non-primitive words of the form $\bold{p}\bold{q}^{\bold{m}}$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 51 (2017) no. 3, pp. 141-166. doi: 10.1051/ita/2017012
, and , Some Kinds of Primitive and non-primitive Words. Acta Inform. 51 (2014) 339–346. | Zbl | MR | DOI
and , Alternative proof of the Lyndon−Schützenberger theorem. Theoret. Comput. Sci. 366 (2006) 194–198. | Zbl | MR | DOI
and , The language of primitive words is not regular: two simple proofs. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 87 (2005) 191–197. | Zbl | MR
, and , On the Shyr−Yu theorem. Theoret. Comput. Sci. 410 (2009) 4874–4877. | Zbl | MR | DOI
P. Dömösi and M. Ito, Context-free languages and primitive words. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2015). | MR | Zbl
, and , Marcus contextual languages consisting of primitive words. Discrete Math. 308 (2008) 4877–4881. | Zbl | MR | DOI
and , Primitive words and spectral spaces. New York J. Math. 14 (2008) 719–731. | Zbl | MR
and , Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109–114. | Zbl | MR | DOI
A. Lentin and M. P. Schützenberger, A combinatorial problem in the theory of free monoids. 1969 Combinatorial Mathematics and its Applications. Proc. Conf., Univ. North Carolina, Chapel Hill, N.C. Univ. North Carolina Press, Chapel Hill, N.C. (1967) 128–144. | MR | Zbl
M. Lothaire, Combinatorics on words (Corrected reprint of the 1983 original). Cambridge University Press, Cambridge (1997). | MR | Zbl
M. Lothaire, Algebraic combinatorics on words. Vol. 90 of Encyclopedia of Math. Appl. Cambridge University Press, Cambridge (2002). | Zbl
and , The equation in a free group. Michigan Math. J. 9 (1962) 289–98. | MR | Zbl | DOI
and , Non-primitive words in the language . Soochow J. Math. 20 (1994) 535–546. | Zbl | MR
Cité par Sources :






