Connectivity and Diagnosability play an important role in measuring the fault tolerance of interconnection networks. As a topology structure of interconnection networks, the expanded -ary -cube has many good properties. In this paper, we prove that (1) the connectivity of is ; (2) the nature connectivity of is ; (3) the nature diagnosability of under the PMC model and MM model is for .
Keywords: Interconnection networks, Combinatorics, Connectivity, Diagnosability, Expandedk-aryn-cubes
Wang, Mujiangshan 1 ; Lin, Yuqing 1 ; Wang, Shiying 2
@article{ITA_2017__51_2_71_0,
author = {Wang, Mujiangshan and Lin, Yuqing and Wang, Shiying},
title = {The connectivity and nature diagnosability of expanded $k$-ary $n$-cubes},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {71--89},
year = {2017},
publisher = {EDP Sciences},
volume = {51},
number = {2},
doi = {10.1051/ita/2017008},
mrnumber = {3731538},
zbl = {1379.05056},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2017008/}
}
TY - JOUR AU - Wang, Mujiangshan AU - Lin, Yuqing AU - Wang, Shiying TI - The connectivity and nature diagnosability of expanded $k$-ary $n$-cubes JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2017 SP - 71 EP - 89 VL - 51 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2017008/ DO - 10.1051/ita/2017008 LA - en ID - ITA_2017__51_2_71_0 ER -
%0 Journal Article %A Wang, Mujiangshan %A Lin, Yuqing %A Wang, Shiying %T The connectivity and nature diagnosability of expanded $k$-ary $n$-cubes %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2017 %P 71-89 %V 51 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2017008/ %R 10.1051/ita/2017008 %G en %F ITA_2017__51_2_71_0
Wang, Mujiangshan; Lin, Yuqing; Wang, Shiying. The connectivity and nature diagnosability of expanded $k$-ary $n$-cubes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 51 (2017) no. 2, pp. 71-89. doi: 10.1051/ita/2017008
, , , , , , , , , , and , Blue Gene/L torus interconnection network. IBM J. Res. Dev. 49 (2005) 265–276. | DOI
, and , A theory of diagnosability of digital systems. IEEE Trans. Comput. 25 (1976) 585–593. | MR | Zbl | DOI
J.A. Bondy and U.S.R. Murty, Graph Theory. Springer, New York (2007). | MR | Zbl
, , and , Lee distance and topological properties of k-ary -cubes. IEEE Trans. Comput. 44 (1995) 1021–1030. | MR | Zbl | DOI
and , Structural properties and conditional diagnosability of star graphs by using the PMC model, IEEE Trans. Parallel Distrib. Syst. 25 (2014) 3002–3011. | DOI
and , An fault identification algorithm for diagnosable systems, IEEE Trans. Comput. 33 (1984) 486–492. | Zbl | DOI
and and F. diameter of -ary -cube networks. IEEE Trans. Parallel and Distrib. Syst. 8 (1997) 903–907. | DOI
, Diagnosability of crossed cubes under the comparison diagnosis model. IEEE Trans. Parallel Distrib. Syst. 13 (2002) 1099–1104. | DOI
and , The 1-good-neighbor diagnosibility of augmented -ary -cubes. Adv. Appl. Math. 5 (2016) 762–772. | DOI
Th.W. Hungerford, Algebra. Springer-Verlag, New York (1974). | Zbl | MR
R.E. Kessler and J.L. Schwarzmeier, Cray T3D: a new dimension for Cray research, in Proc. 38th IEEE Comput. Soc. Inter. Confer., Spring, San Francisco (1993) 176–182.
, , and , Conditional diagnosability measures for large multiprocessor systems. IEEE Trans. Comput. 54 (2005) 165–175. | DOI
, , , Eddie Cheng and László Lipták, Conditional diagnosability of Cayley graphs generated by transposition trees under the comparison diagnosis model. J. Interconnection Netw. 9 (2008) 83–97. | DOI
J. Maeng and M. Malek, A comparison connection assignment for self-diagnosis of multiprocessor systems, in Proc. 11th Inter. Symp. Fault-Tolerant Comput. (1981) 173–175.
M. Noakes and W.J. Dally, System design of the J-machine, in: Proceedings of the sixth MIT conference on Advanced research in VLSI. MIT Press, Cambridge (1990) 179–194. | MR
, , and , The g-good-neighbor conditional diagnosability of hypercube under PMC model. Appl. Math. Comput. 218 (2012) 10406–10412. | MR | Zbl
, and , iWarp: a 100-MOPS VLIW microprocessor for multicomputers. IEEE Micro 11 (1991) 26–37. | DOI
, and , On the connection assignment problem of diagnosable systems. IEEE Trans. Comput. EC-16 (1967) 848–854. | Zbl | DOI
, and , The 1-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM model. Int. J. Comput. Math. 94 (2017) 620–631. | MR | Zbl | DOI
, and , The 2-good-neighbor diagnosability of Cayley graphs generated by transposition trees under the PMC model and MM* model. Theoret. Comput. Sci. 628 (2016) 92–100. | MR | Zbl | DOI
and , The -good-neighbor conditional diagnosability of -dimensional hypercubes under the MM* model. Inf. Process. Lett. 116 (2016) 574–577. | MR | Zbl | DOI
, and , The 2-extra connectivity and 2-extra diagnosability of bubble-sort star graph networks. Comput. J. 59 (2016) 1839–1856. | MR | DOI
, and , The 2-good-neighbor connectivity and 2-good-neighbor diagnosability of bubble-sort star graph networks. Discrete Appl. Math. 217 (2017) 691–706. | MR | Zbl | DOI
and , The 2-good-neighbor (2-extra) diagnosability of alternating group graph networks under the PMC model and MM* model. Appl. Math. Comput. 305 (2017) 241–250. | MR | Zbl
and , Augmented -ary -cubes. Inf. Sci. 181 (2011) 239–256. | MR | Zbl | DOI
, , , , and , The -good-neighbor conditional diagnosability of -ary -cubes under the PMC model and MM model. IEEE Trans. Parallel Distrib. Syst. 26 (2015) 1165–1177. | DOI
, , , and , -Good-neighbor conditional diagnosability measures for 3-ary -cube networks. Theoret. Comput. Sci. 622 (2016) 144–162. | MR | Zbl | DOI
and , The g-extra conditional diagnosability and sequential -diagnosability of hypercubes. Inter. J. Comput. Math. 93 (2016) 482–497. | MR | Zbl | DOI
and , The 1-good-neighbor diagnosability of augmented 3-ary -cubes. Adv. Appl. Math. 5 (2016) 754–761. | DOI
Cité par Sources :





