Let be a simple undirected graph. The reinforcement number of a graph is a vulnerability parameter of a graph. We have investigated a refinement that involves the average lower reinforcement number of this parameter. , denoted by , is the minimum cardinality of in that contains the edge of the complement graph . The of is defined by . In this paper, we define the average lower reinforcement number of a graph and we present the exact values for some well−known graph families.
Keywords: Graph vulnerability, connectivity, network design and communication, domination number, reinforcement number, average lower reinforcement number
Turaci, Tufan 1 ; Aslan, Ersin 2
@article{ITA_2016__50_2_135_0,
author = {Turaci, Tufan and Aslan, Ersin},
title = {The average lower reinforcement number of a graph},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {135--144},
year = {2016},
publisher = {EDP Sciences},
volume = {50},
number = {2},
doi = {10.1051/ita/2016015},
mrnumber = {3580107},
zbl = {1352.05101},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2016015/}
}
TY - JOUR AU - Turaci, Tufan AU - Aslan, Ersin TI - The average lower reinforcement number of a graph JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 135 EP - 144 VL - 50 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2016015/ DO - 10.1051/ita/2016015 LA - en ID - ITA_2016__50_2_135_0 ER -
%0 Journal Article %A Turaci, Tufan %A Aslan, Ersin %T The average lower reinforcement number of a graph %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 135-144 %V 50 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2016015/ %R 10.1051/ita/2016015 %G en %F ITA_2016__50_2_135_0
Turaci, Tufan; Aslan, Ersin. The average lower reinforcement number of a graph. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 50 (2016) no. 2, pp. 135-144. doi: 10.1051/ita/2016015
, The Average Lower Connectivity of Graphs. J. Appl. Math. 2014 (2014) 807834. | MR | Zbl | DOI
and , The Average Lower Domination Number of Graphs. Bull. Int. Math. Virtual Inst. 3 (2013) 155–160. | MR | Zbl
, Vertex Vulnerability Parameter of Gear Graphs. Int. J. Found. Comput. Sci. 22 (2011) 1187–1195. | MR | Zbl | DOI
, and , On The Bondage Number of Middle Graphs. Math. Notes 93 (2013) 803–811. | MR | Zbl | DOI
, and , The Bondage Number for Some Graphs. C. R. Acad. Bulg. Sci. 64 (2011) 925–930. | MR | Zbl
, Average Lower Domination Number in Graphs. C. R. Acad. Bulg. Sci. 65 (2012) 1665–1674. | MR | Zbl
, and , Vulnerability in graphs-a comparative survey. J. Comb. Math. Comb. Comput. 1 (1987) 13–22. | MR | Zbl
, , , , and , On domination and reinforcement numbers in trees. Discrete Math. 308 (2008) 1165–1175 | MR | Zbl | DOI
, and , The Average Connectivity of a Graph. Discrete Math. 252 (2002) 31–45. | MR | Zbl | DOI
, and , On Average Lower Independence and Domination Number in Graphs. Discrete Math. 295 (2005) 1–11. | MR | Zbl | DOI
, and , Bondage and reinforcement number of for complete multipartite graph. J. Beijin Inst. Technol. 12 (2003) 89–91. | MR | Zbl
, Tough graphs and Hamiltonian circuits. Discrete Math. 5 (1973) 215–228. | MR | Zbl | DOI
and , The bondage and reinforcement numbers of for some graphs. Discrete Math. 167-168 (1997) 249–259. | MR | Zbl | DOI
, T. Turacı and D. Dog˜an, Weak and Strong Reinforcement Number of a Graph. Int. J. Math. Comb. 3 (2010) 91–97. | Zbl
and , Analysis and design of survivable Networks. IEEE Trans. Commun. Technol. 18 (1970) 501–519. | MR | DOI
, , and , Strong bondage and strong reinforcement numbers of graphs. Congr. Numer. (English) 108 (1995) 33–42. | MR | Zbl
T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Advanced Topic. Marcel Dekker, Inc, New York (1998). | MR | Zbl
, Trees with Equal Average Domination and Independent Domination Numbers. Ars Comb. 71 (2004) 305–318. | MR | Zbl
and , The Average Connectivity of a Digraph. Discrete Appl. Math. 140 (2004) 143–153. | MR | Zbl | DOI
, and , A note on total reinforcement in graph. Discrete Appl. Math. 159 (2011) 1443–1446. | MR | Zbl | DOI
and , On the complexity of the bondage and reinforcement problems. J. Complexity 28 (2012) 192–201 | MR | Zbl | DOI
, and , Reinforcement number of digraphs. Discrete Appl. Math. 157 (2009) 1938–1946. | MR | Zbl | DOI
and , Reinforcement in Graphs. Congr. Numer. 79 (1990) 225–231. | MR | Zbl
, , and , Signed reinforcement numbers of certain graphs. AKCE Int. J. Graphs Comb. 9 (2012) 59–70. | MR | Zbl
, and , On the p-reinforcement and the complexity. J. Combin,. Optim. 29 (2015) 389–405. | MR | Zbl | DOI
, and , Vulnerability of complex Networks. Commun. Nonlin. Sci. Numer Simul. 16 (2011) 341–349. | MR | Zbl | DOI
and , Design of survivable communication networks under performance constraints. IEEE Trans. Reliab. 40 (1991) 433–440. | Zbl | DOI
and , Roman reinforcement in graphs. Bull. Inst. Comb. Appl. 61 (2011) 81–90. | MR | Zbl
, and , Total reinforcement number of a graph. AKCE Int. J. Graphs Comb. 4 (2007) 197–202. | MR | Zbl
, and , The Average Lower Domination Number and Some Results of Complementary Prisms and Graph Join. J. Adv. Res. Appl. Math. 7 (2015) 52–61. | MR | DOI
T. Turaci, On the average lower bondage number a graph. To appear in RAIRO-Oper. Res. (2016). | DOI | MR | Numdam
and , Vulnerability of Mycielski Graphs via Residual Closeness. Ars Comb. 118 (2015) 419–427. | MR | Zbl
, and , Independence bondage and reinforcement number of some graphs. Trans. Beijin Inst. Technol. 23 (2003) 140–142. | MR | Zbl
Cité par Sources :





