We consider tilings of a board by and squares and get combinatorical results on proportions of small squares for in plain case and for in cylindrical case.
Accepté le :
DOI : 10.1051/ita/2016011
Keywords: Tiling, square tiles, generating functions, automaton, strip tilings, tiling graph
Rolin, Nicolas 1 ; Ugolnikova, Alexandra 1
@article{ITA_2016__50_1_105_0,
author = {Rolin, Nicolas and Ugolnikova, Alexandra},
title = {Tilings by $1 \times{} 1$ and $2 \times{} 2$},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {105--116},
year = {2016},
publisher = {EDP Sciences},
volume = {50},
number = {1},
doi = {10.1051/ita/2016011},
zbl = {1346.05028},
mrnumber = {3518163},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2016011/}
}
TY - JOUR
AU - Rolin, Nicolas
AU - Ugolnikova, Alexandra
TI - Tilings by $1 \times{} 1$ and $2 \times{} 2$
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2016
SP - 105
EP - 116
VL - 50
IS - 1
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/ita/2016011/
DO - 10.1051/ita/2016011
LA - en
ID - ITA_2016__50_1_105_0
ER -
%0 Journal Article
%A Rolin, Nicolas
%A Ugolnikova, Alexandra
%T Tilings by $1 \times{} 1$ and $2 \times{} 2$
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2016
%P 105-116
%V 50
%N 1
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/ita/2016011/
%R 10.1051/ita/2016011
%G en
%F ITA_2016__50_1_105_0
Rolin, Nicolas; Ugolnikova, Alexandra. Tilings by $1 \times{} 1$ and $2 \times{} 2$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Special issue dedicated to the 15th "Journées Montoises d'Informatique Théorique", Tome 50 (2016) no. 1, pp. 105-116. doi: 10.1051/ita/2016011
, , , , and , Counting kings: as easy as Congr. Numer. 183 (2006) 83–95. | Zbl | MR
P. Flajolet and R. Sedgewick, Analytical Combinatorics. Cambridge University Press (2009). | Zbl | MR
, Tiling an m-by-n Area with Squares of Size up to k-by-k with m 5. Congr. Numerantium 140 (1999) 43–64. | Zbl | MR
and , Patterns Arising From Tiling Rectangles with and Squares. Congr. Numerantium 150 (2001) 173–192. | Zbl | MR
M.-L. Lackner and M. Wallner, An invitation to analytic combinatorics and lattice path counting. Lecture note of the 2015 ALEA in Europe Young Researchers’ Workshop (2015).
R.J. Mathar, Tilings of Rectangular Regions by Rectangular Tiles: Counts Derived from Transfer Matrices. Preprint (2014). | arXiv
N.J.A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences. Academic Press, San Diego (1995). | Zbl | MR
Cité par Sources :






