A shuffle square is a word that can be partitioned into two identical words. We obtain a short proof that there exist exponentially many words over the 7 letter alphabet containing no shuffle square as a factor. The method is a generalization of the so-called power series method using ideas of the entropy compression method as developped by Gonçalves et al. [Entropy compression method applied to graph colorings. arXiv:1406.4380].
Accepté le :
DOI : 10.1051/ita/2016007
Keywords: Combinatorics on words, shuffle square, entropy compression
Guégan, Guillaume 1 ; Ochem, Pascal 2
@article{ITA_2016__50_1_101_0,
author = {Gu\'egan, Guillaume and Ochem, Pascal},
title = {A short proof that shuffle squares are 7-avoidable},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {101--103},
year = {2016},
publisher = {EDP Sciences},
volume = {50},
number = {1},
doi = {10.1051/ita/2016007},
zbl = {1353.68224},
mrnumber = {3518162},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2016007/}
}
TY - JOUR AU - Guégan, Guillaume AU - Ochem, Pascal TI - A short proof that shuffle squares are 7-avoidable JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 101 EP - 103 VL - 50 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/ita/2016007/ DO - 10.1051/ita/2016007 LA - en ID - ITA_2016__50_1_101_0 ER -
%0 Journal Article %A Guégan, Guillaume %A Ochem, Pascal %T A short proof that shuffle squares are 7-avoidable %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 101-103 %V 50 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/ita/2016007/ %R 10.1051/ita/2016007 %G en %F ITA_2016__50_1_101_0
Guégan, Guillaume; Ochem, Pascal. A short proof that shuffle squares are 7-avoidable. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Special issue dedicated to the 15th "Journées Montoises d'Informatique Théorique", Tome 50 (2016) no. 1, pp. 101-103. doi: 10.1051/ita/2016007
and , Exponential lower bounds for the number of words of uniform length avoiding a pattern. Inform. Comput. 205 (2007) 1295–1306. | Zbl | MR | DOI
and , Strict bounds for pattern avoidance. Theor. Comput. Sci. 506 (2013) 17–27. | Zbl | MR | DOI
J. Currie, Shuffle squares are avoidable. Manuscript.
D. Gonçalves, M. Montassier and A. Pinlou, Entropy compression method applied to graph colorings. Preprint (2015). | arXiv
, and , A new approach to nonrepetitive sequences. Random Structures & Algorithms 42 (2013) 214–225. | Zbl | MR | DOI
J. Grytczuk, J. Kozik and B. Zaleski, Avoiding tight twins in sequences by entropy compression. Available at http://ssdnm.mimuw.edu.pl/pliki/prace-studentow/st/pliki/bartosz-zaleski-3.pdf
M. Müller, Avoiding and enforcing repetitive structures in words. Ph.D. thesis (2014).
P. Ochem, Doubled patterns are -avoidable. Preprint (2015). | arXiv | MR
and , Application of entropy compression in pattern avoidance. Electron. J. Combin. 21 (2014) #RP2.7. | Zbl | MR | DOI
, Further applications of a power series method for pattern avoidance. Electron. J. Combin. 18 (2011) #P134. | Zbl | MR | DOI
Cité par Sources :






