We show that Dejean’s conjecture holds for . This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.
Keywords: Dejean's conjecture, repetitions in words, fractional exponent
@article{ITA_2009__43_4_775_0,
author = {Currie, James and Rampersad, Narad},
title = {Dejean{\textquoteright}s conjecture holds for $\sf {N\ge 27}$},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
pages = {775--778},
year = {2009},
publisher = {EDP Sciences},
volume = {43},
number = {4},
doi = {10.1051/ita/2009017},
mrnumber = {2589992},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ita/2009017/}
}
TY - JOUR
AU - Currie, James
AU - Rampersad, Narad
TI - Dejean’s conjecture holds for $\sf {N\ge 27}$
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 2009
SP - 775
EP - 778
VL - 43
IS - 4
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/ita/2009017/
DO - 10.1051/ita/2009017
LA - en
ID - ITA_2009__43_4_775_0
ER -
%0 Journal Article
%A Currie, James
%A Rampersad, Narad
%T Dejean’s conjecture holds for $\sf {N\ge 27}$
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2009
%P 775-778
%V 43
%N 4
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/ita/2009017/
%R 10.1051/ita/2009017
%G en
%F ITA_2009__43_4_775_0
Currie, James; Rampersad, Narad. Dejean’s conjecture holds for $\sf {N\ge 27}$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 4, pp. 775-778. doi: 10.1051/ita/2009017
[1] , Uniformly growing -th powerfree homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | Zbl | MR
[2] , Non-repetitive sequences on three symbols. Quart. J. Math. Oxford 34 (1983) 145-149. | Zbl | MR
[3] , On Dejean's conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137-151. | Zbl | MR
[4] and , Dejean’s conjecture holds for . Theoret. Comput. Sci. 410 (2009) 2885-2888. | Zbl | MR
[5] , , A proof of Dejean's conjecture, http://arxiv.org/pdf/0905.1129v3. | Zbl
[6] , Sur un théorème de Thue. J. Combin. Theory Ser. A 13 (1972) 90-99. | Zbl | MR
[7] , and , A generalization of repetition threshold. Theoret. Comput. Sci. 345 (2005) 359-369. | Zbl | MR
[8] , On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 70-88. | Zbl | MR
[9] , Combinatorics on Words, Encyclopedia of Mathematics and its Applications 17. Addison-Wesley, Reading (1983). | Zbl | MR
[10] and , Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199-204. | Zbl | MR | Numdam
[11] and , Dejean's conjecture and Sturmian words. Eur. J. Combin. 28 (2007) 876-890. | Zbl | MR
[12] , Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters. Theoret. Comput. Sci. 95 (1992) 187-205. | Zbl | MR
[13] , À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297-311. | Zbl | MR
[14] , Last cases of Dejean's Conjecture, http://www.labri.fr/perso/rao/publi/dejean.ps.
[15] , Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 7 (1906) 1-22. | JFM
[16] , Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912) 1-67. | JFM
Cité par Sources :





