We study the potential which minimizes the fundamental gap of the Schrödinger operator under the total mass constraint. We consider the relaxed potential and prove a regularity result for the optimal one, we also give a description of it. A consequence of this result is the existence of an optimal potential under L1 constraints.
Keywords: Schrödinger operator, eigenvalue problems, measure theory, shape optimization
@article{COCV_2010__16_1_194_0,
author = {Varchon, Nicolas},
title = {Optimal measures for the fundamental gap of {Schr\"odinger} operators},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {194--205},
year = {2010},
publisher = {EDP Sciences},
volume = {16},
number = {1},
doi = {10.1051/cocv:2008069},
mrnumber = {2598095},
zbl = {1183.35092},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2008069/}
}
TY - JOUR AU - Varchon, Nicolas TI - Optimal measures for the fundamental gap of Schrödinger operators JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 194 EP - 205 VL - 16 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008069/ DO - 10.1051/cocv:2008069 LA - en ID - COCV_2010__16_1_194_0 ER -
%0 Journal Article %A Varchon, Nicolas %T Optimal measures for the fundamental gap of Schrödinger operators %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 194-205 %V 16 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008069/ %R 10.1051/cocv:2008069 %G en %F COCV_2010__16_1_194_0
Varchon, Nicolas. Optimal measures for the fundamental gap of Schrödinger operators. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 194-205. doi: 10.1051/cocv:2008069
[1] , and , On minimal and maximal eigenvalue gaps and their causes. Pacific J. Math. 147 (1991) 1-24. | Zbl
[2] and , Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications 65. Birkhäuser, Basel, Boston (2005). | Zbl
[3] and , Strict monotonicity of the second eigenvalue of the Laplace operator on relaxed domain. Bull. Appl. Comp. Math. 1510-1566 (1998) 115-122.
[4] and , Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000) 985-996. | Zbl
[5] and , Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17-49. | Zbl
[6] , and , Optimal measures for elliptic problems. Annali Mat. Pur. Appl. 185 (2006) 207-221.
[7] and , Methods of Mathematical Physics. Interscience Publishers (1953). | Zbl
[8] , Γ-convergence and µ-capacities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) 423-464. | Zbl | Numdam
[9] , An introduction to Γ-convergence. Birkhäuser, Boston (1993). | Zbl
[10] and , Wiener's criterion and Γ-convergence. Appl. Math. Optim. 15 (1987) 15-63. | Zbl
[11] and , Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). | Zbl
[12] , Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel, Boston, Berlin (2006). | Zbl
[13] , Perturbation Theory for Linear Operators. Springer-Verlag (1980). | Zbl
[14] , Optimal measures for nonlinear cost functionals. Appl. Mat. Opt. 54 (2006) 205-221. | Zbl
[15] , Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). | Zbl
Cité par Sources :






