An a priori Campanato type regularity condition is established for a class of W1X local minimisers of the general variational integral where is an open bounded domain, F is of class C2, F is strongly quasi-convex and satisfies the growth condition for a p > 1 and where the corresponding Banach spaces X are the Morrey-Campanato space , µ < n, Campanato space and the space of bounded mean oscillation . The admissible maps are of Sobolev class W1,p, satisfying a Dirichlet boundary condition, and to help clarify the significance of the above result the sufficiency condition for W1BMO local minimisers is extended from Lipschitz maps to this admissible class.
Keywords: calculus of variations, local minimiser, partial regularity, strong quasiconvexity, Campanato space, Morrey space, Morrey-Campanato space, space of bounded mean oscillation, extremals, positive second variation
@article{COCV_2010__16_1_111_0,
author = {Dodd, Thomas J.},
title = {An a priori {Campanato} type regularity condition for local minimisers in the calculus of variations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {111--131},
year = {2010},
publisher = {EDP Sciences},
volume = {16},
number = {1},
doi = {10.1051/cocv:2008066},
mrnumber = {2598091},
zbl = {1183.49037},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2008066/}
}
TY - JOUR AU - Dodd, Thomas J. TI - An a priori Campanato type regularity condition for local minimisers in the calculus of variations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 111 EP - 131 VL - 16 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008066/ DO - 10.1051/cocv:2008066 LA - en ID - COCV_2010__16_1_111_0 ER -
%0 Journal Article %A Dodd, Thomas J. %T An a priori Campanato type regularity condition for local minimisers in the calculus of variations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 111-131 %V 16 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008066/ %R 10.1051/cocv:2008066 %G en %F COCV_2010__16_1_111_0
Dodd, Thomas J. An a priori Campanato type regularity condition for local minimisers in the calculus of variations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 111-131. doi: 10.1051/cocv:2008066
[1] and , A regularity theorem for quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261-281. | Zbl
[2] and , Local regularity for minimizers of non convex integrals. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 16 (1989) 603-636. | Zbl | Numdam
[3] and , Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140 (1989) 115-135. | Zbl
[4] , Proprietà di hölderianità di alcune classi di funzioni. Ann. Scuola Norm. Sup. Pisa (3) 17 (1963) 175-188. | Zbl | Numdam
[5] and , Partial regularity of local minimisers of quasiconvex integrals with sub-quadratic growth. Proc. Roy. Soc. Edinburgh 133 (2003) 1249-1262. | Zbl
[6] , and , Partial regularity of minimisers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl. 175 (1998) 141-164. | Zbl
[7] , and , Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl. 184 (2005) 421-448.
[8] , Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227-252. | Zbl
[9] and , Hp spaces of several variables. Acta Math. 129 (1972) 137-193. | Zbl
[10] , Positive second variation and local minimisers in BMO-Sobolev spaces. SFB 256: Preprint No. 252, University of Bonn, Germany (1992).
[11] , Direct methods in the calculus of variations. World Scientific Publishing, Singapore (2003). | Zbl
[12] and , Sulla regolaritá delle soluzioni di una classe di sistemi ellittici quasi-lineari. Arch. Ration. Mech. Anal. 31 (1968) 173-184. | Zbl
[13] and , Direct approach to the problem of strong local minima in calculus of variations. Calc. Var. Partial Differential Equations 29 (2007) 59-83. | Zbl
[14] and , On functions of bounded mean oscillation. Comm. Pure Appl. Math. 14 (1961) 415-426. | Zbl
[15] and , Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170 (2003) 63-89. | Zbl
[16] , Vanishing mean oscillation and regularity in the calculus of variations. Preprint No. 96, MPI for Mathematics in the Sciences, Leipzig, Germany (2001).
[17] and , Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. 157 (2003) 715-742. | Zbl
Cité par Sources :





