For external magnetic field hex ≤ Cε-α, we prove that a Meissner state solution for the Chern-Simons-Higgs functional exists. Furthermore, if the solution is stable among all vortexless solutions, then it is unique.
Keywords: Chern-Simons-Higgs theory, superconductivity, uniqueness, meissner solution
@article{COCV_2010__16_1_23_0,
author = {Spirn, Daniel and Yan, Xiaodong},
title = {Uniqueness of stable {Meissner} state solutions of the {Chern-Simons-Higgs} energy},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {23--36},
year = {2010},
publisher = {EDP Sciences},
volume = {16},
number = {1},
doi = {10.1051/cocv:2008062},
mrnumber = {2598086},
zbl = {1186.35054},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2008062/}
}
TY - JOUR AU - Spirn, Daniel AU - Yan, Xiaodong TI - Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 23 EP - 36 VL - 16 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008062/ DO - 10.1051/cocv:2008062 LA - en ID - COCV_2010__16_1_23_0 ER -
%0 Journal Article %A Spirn, Daniel %A Yan, Xiaodong %T Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 23-36 %V 16 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008062/ %R 10.1051/cocv:2008062 %G en %F COCV_2010__16_1_23_0
Spirn, Daniel; Yan, Xiaodong. Uniqueness of stable Meissner state solutions of the Chern-Simons-Higgs energy. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 1, pp. 23-36. doi: 10.1051/cocv:2008062
[1] and , Topological methods for the Ginzburg-Landau equations. J. Math. Pures. Appl. 77 (1998) 1-49. | Zbl
[2] , and , Asymptotics for the minimization of a Ginzburg-Landau functional. Cal. Var. Partial Differ. Equ. 1 (1993) 123-148. | Zbl
[3] , and , Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ → +∞. SIAM J. Math. Anal. 31 (2000) 1374-1395. | Zbl
[4] and , Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons CP(1) model. Nonlinear Anal. 66 (2007) 2794-2813. | Zbl
[5] and , Gamma limit of the nonself-dual Chern-Simons-Higgs energy. J. Funct. Anal. 244 (2008) 535-588. | Zbl
[6] and , Scaling limits of the Chern-Simons-Higgs energy. Commun. Contemp. Math. 10 (2008) 1-16.
[7] and , Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications 39. Birkhäuser Boston, Inc., Boston, MA, USA (2000). | Zbl
[8] and , Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 119-145. | Zbl | Numdam
[9] , Stable configurations in superconductivity: Uniqueness, mulitplicity, and vortex-nucleation. Arch. Rational Mech. Anal. 149 (1999) 329-365. | Zbl
[10] and , Minimizers near the first critical field for the nonself-dual Chern-Simons-Higgs energy. Calc. Var. Partial Differ. Equ. (to appear). | Zbl | MR
[11] , Uniqueness of selfdual periodic Chern-Simons vortices of topological-type. Calc. Var. Partial Differ. Equ. 29 (2007) 191-217. | Zbl | MR
[12] and , Uniqueness of solutions of the Ginzburg-Landau problem. Nonlinear Anal. 26 (1996) 603-612. | Zbl | MR
Cité par Sources :





