In this paper we study the lower semicontinuous envelope with respect to the -topology of a class of isotropic functionals with linear growth defined on mappings from the -dimensional ball into that are constrained to take values into a smooth submanifold of .
Keywords: relaxation, manifold constrain, BV functions
@article{COCV_2009__15_2_295_0,
author = {Mucci, Domenico},
title = {Relaxation of isotropic functionals with linear growth defined on manifold constrained {Sobolev} mappings},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {295--321},
year = {2009},
publisher = {EDP Sciences},
volume = {15},
number = {2},
doi = {10.1051/cocv:2008026},
mrnumber = {2513088},
zbl = {1167.49015},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2008026/}
}
TY - JOUR AU - Mucci, Domenico TI - Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 295 EP - 321 VL - 15 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008026/ DO - 10.1051/cocv:2008026 LA - en ID - COCV_2009__15_2_295_0 ER -
%0 Journal Article %A Mucci, Domenico %T Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 295-321 %V 15 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008026/ %R 10.1051/cocv:2008026 %G en %F COCV_2009__15_2_295_0
Mucci, Domenico. Relaxation of isotropic functionals with linear growth defined on manifold constrained Sobolev mappings. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 2, pp. 295-321. doi: 10.1051/cocv:2008026
[1] and , 3D-2D asymptotic analysis for micromagnetic thin films. ESAIM: COCV 6 (2001) 489-498. | Zbl | MR | Numdam
[2] , and , Relaxation in of functionals defined on Sobolev functions with values into the unit sphere. J. Convex Anal. 14 (2007) 69-98. | Zbl | MR
[3] , and , Functions of bounded variation and free discontinuity problems, Oxford Math. Monographs. Oxford (2000). | Zbl | MR
[4] , The approximation problem for Sobolev maps between manifolds. Acta Math. 167 (1992) 153-206. | Zbl | MR
[5] , , and , Manifold constrained variational problems. Calc. Var. 9 (1999) 185-206. | Zbl | MR
[6] and , Relaxed energies for functionals on . Nonlinear Anal. 19 (1992) 625-641. | Zbl | MR
[7] , Geometric measure theory, Grundlehren math. Wissen. 153. Springer, Berlin (1969). | Zbl | MR
[8] and , Relaxation of quasiconvex functionals in for integrands . Arch. Rat. Mech. Anal. 123 (1993) 1-49. | Zbl | MR
[9] and , Relaxation of multiple integrals in the space . Proc. Royal Soc. Edin. 121A (1992) 321-348. | Zbl | MR
[10] , Caratterizzazione delle tracce sulla frontiera relative ad alcune classi di funzioni in variabili. Rend. Sem. Mat. Univ. Padova 27 (1957) 284-305. | Zbl | MR | Numdam
[11] and , The -energy of maps into a manifold: relaxation and density results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 5 (2006) 483-548. | Zbl | MR | Numdam
[12] and , Maps into manifolds and currents: area and -, -, -energies. Edizioni della Normale, C.R.M. Series, Sc. Norm. Sup. Pisa (2006). | Zbl | MR
[13] and , Erratum and addendum to: The -energy of maps into a manifold: relaxation and density results. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 6 (2007) 185-194. | Zbl | MR
[14] and , Relaxation results for a class of functionals with linear growth defined on manifold constrained mappings. Journal of Convex Analysis 15 (2008) (online). | MR
[15] , and , Variational problems for maps of bounded variations with values in . Calc. Var. 1 (1993) 87-121. | Zbl | MR
[16] , and , Cartesian currents in the calculus of variations, I, II. Ergebnisse Math. Grenzgebiete (III Ser.) 37, 38. Springer, Berlin (1998). | Zbl | MR
[17] and , Ground states in complex bodies. ESAIM: COCV (to appear). | Zbl | MR | Numdam
[18] , Weak convergence of completely additive vector functions on a set. Siberian Math. J. 9 (1968) 1039-1045. | Zbl
Cité par Sources :





