We consider an optimal control problem for a system of the form = , with a running cost . We prove an interior sphere property for the level sets of the corresponding value function . From such a property we obtain a semiconcavity result for , as well as perimeter estimates for the attainable sets of a symmetric control system.
Keywords: control theory, interior sphere property, value function, semiconcavity, perimeter
@article{COCV_2009__15_1_102_0,
author = {Castelpietra, Marco},
title = {Interior sphere property for level sets of the value function of an exit time problem},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {102--116},
year = {2009},
publisher = {EDP Sciences},
volume = {15},
number = {1},
doi = {10.1051/cocv:2008018},
mrnumber = {2488570},
zbl = {1155.49024},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2008018/}
}
TY - JOUR AU - Castelpietra, Marco TI - Interior sphere property for level sets of the value function of an exit time problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 102 EP - 116 VL - 15 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008018/ DO - 10.1051/cocv:2008018 LA - en ID - COCV_2009__15_1_102_0 ER -
%0 Journal Article %A Castelpietra, Marco %T Interior sphere property for level sets of the value function of an exit time problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 102-116 %V 15 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008018/ %R 10.1051/cocv:2008018 %G en %F COCV_2009__15_1_102_0
Castelpietra, Marco. Interior sphere property for level sets of the value function of an exit time problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 1, pp. 102-116. doi: 10.1051/cocv:2008018
[1] , and , Existence and uniqueness for dislocation dynamics with nonnegative velocity. Interfaces Free Bound. 7 (2005) 415-434. | Zbl | MR
[2] and , Perimeter estimates for the reachable set of control problems. J. Convex Anal. 13 (2006) 253-267. | Zbl | MR
[3] and , Interior sphere property of attainable sets and time optimal control problems. ESAIM: COCV 12 (2006) 350-370. | Zbl | MR | Numdam
[4] and , Convexity properties of the minimun time function. Calc. Var. Partial Differential Equations 3 (1995) 273-298. | Zbl | MR
[5] and , Semiconcave Functions, Hamilton-Jacobi Equations and Optimal Control. Birkhauser, Boston (2004). | Zbl | MR
[6] , and , Semiconcavity for optimal control problems with exit time. Discrete Contin. Dynam. Systems 6 (2000) 975-997. | Zbl | MR
[7] and , Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. Boca Raton (1992). | Zbl | MR
[8] , Semiconcavity of the value function for exit time problems with nonsmooth target. Commun. Pure Appl. Anal. 3 (2004) 757-774. | Zbl | MR
Cité par Sources :





