Given a Borel function defined on a bounded open set with Lipschitz boundary and , we prove an explicit representation formula for the lower semicontinuous envelope of Mumford-Shah type functionals with the obstacle constraint a.e. on and the Dirichlet boundary condition on .
Keywords: obstacle problems, Mumford-Shah energy, relaxation
@article{COCV_2008__14_4_879_0,
author = {Focardi, Matteo and Gelli, Maria Stella},
title = {Relaxation of free-discontinuity energies with obstacles},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {879--896},
year = {2008},
publisher = {EDP Sciences},
volume = {14},
number = {4},
doi = {10.1051/cocv:2008014},
mrnumber = {2451801},
zbl = {1148.49011},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2008014/}
}
TY - JOUR AU - Focardi, Matteo AU - Gelli, Maria Stella TI - Relaxation of free-discontinuity energies with obstacles JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 879 EP - 896 VL - 14 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008014/ DO - 10.1051/cocv:2008014 LA - en ID - COCV_2008__14_4_879_0 ER -
%0 Journal Article %A Focardi, Matteo %A Gelli, Maria Stella %T Relaxation of free-discontinuity energies with obstacles %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 879-896 %V 14 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008014/ %R 10.1051/cocv:2008014 %G en %F COCV_2008__14_4_879_0
Focardi, Matteo; Gelli, Maria Stella. Relaxation of free-discontinuity energies with obstacles. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 879-896. doi: 10.1051/cocv:2008014
[1] and , Energies in SBV and variational models in fracture mechanics1997) 1-22. | Zbl | MR
[2] , and , Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000). | Zbl | MR
[3] , The Euler equation for functionals with linear growth. Trans. Amer. Math. Soc. 290 (1985) 483-501. | Zbl | MR
[4] , Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics. Springer-Verlag, Berlin (1998). | Zbl | MR
[5] , -convergence for beginners. Oxford University Press, Oxford (2002). | MR | Zbl
[6] , , and , Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359-396. | Zbl | MR
[7] , , and , Limits of obstacle problems for the area functional, in Partial Differential Equations and the Calculus of Variations, Vol. I, PNDEA 1, Birkhäuser Boston, Boston (1989) 285-309. | Zbl | MR
[8] , Una definizione alternativa per una misura usata nello studio di ipersuperfici minimali. Boll. Un. Mat. Ital. 8 (1973) 159-173. | Zbl | MR
[9] , An Introduction to -convergence. Birkhäuser, Boston (1993). | Zbl | MR
[10] , Variational problems in Fracture Mechanics. Preprint S.I.S.S.A. (2006). | MR
[11] , and , Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225. | Zbl | MR
[12] , Problemi di superfici minime con ostacoli: forma non cartesiana. Boll. Un. Mat. Ital. 8 (1973) 80-88. | Zbl | MR
[13] and , Un nuovo funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199-210. | Zbl | MR
[14] , and , Frontiere orientate di misura minima e questioni collegate. Quaderno della Scuola Normale Superiore di Pisa, Editrice Tecnico Scientifica, Pisa (1972). | Zbl | MR
[15] and , Asymptotic analysis of Mumford-Shah type energies in periodically perforated domains. Interfaces and Free Boundaries 9 (2007) 107-132. | Zbl | MR
[16] , A measure of De Giorgi and others does not equal twice the Hausdorff measure. Notices Amer. Math. Soc. 24 (1977) A-240.
[17] , On the relationship between Hausdorff measure and a measure of De Giorgi, Colombini, Piccinini. Boll. Un. Mat. Ital. 18-B (1981) 619-628. | Zbl | MR
[18] and , Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 17 (1989) 577-685. | Zbl | MR
[19] , De Giorgi's measure and thin obstacles, in Geometric measure theory and minimal surfaces, C.I.M.E. III Ciclo, Varenna (1972) 221-230; Edizioni Cremonese, Rome (1973). | Zbl | MR
Cité par Sources :





