The irrigation problem is the problem of finding an efficient way to transport a measure onto a measure . By efficient, we mean that a structure that achieves the transport (which, following [Bernot, Caselles and Morel, Publ. Mat. 49 (2005) 417-451], we call traffic plan) is better if it carries the mass in a grouped way rather than in a separate way. This is formalized by considering costs functionals that favorize this property. The aim of this paper is to introduce a dynamical cost functional on traffic plans that we argue to be more realistic. The existence of minimizers is proved in two ways: in some cases, we can deduce it from a classical semicontinuity argument; the other cases are treated by studying the link between our cost and the one introduced in [Bernot, Caselles and Morel, Publ. Mat. 49 (2005) 417-451]. Finally, we discuss the stability of minimizers with respect to specific variations of the cost functional.
Keywords: irrigation problem, traffic plans, dynamical cost, stability
@article{COCV_2008__14_4_864_0,
author = {Bernot, Marc and Figalli, Alessio},
title = {Synchronized traffic plans and stability of optima},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {864--878},
year = {2008},
publisher = {EDP Sciences},
volume = {14},
number = {4},
doi = {10.1051/cocv:2008012},
mrnumber = {2451800},
zbl = {1148.49039},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2008012/}
}
TY - JOUR AU - Bernot, Marc AU - Figalli, Alessio TI - Synchronized traffic plans and stability of optima JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 864 EP - 878 VL - 14 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008012/ DO - 10.1051/cocv:2008012 LA - en ID - COCV_2008__14_4_864_0 ER -
%0 Journal Article %A Bernot, Marc %A Figalli, Alessio %T Synchronized traffic plans and stability of optima %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 864-878 %V 14 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008012/ %R 10.1051/cocv:2008012 %G en %F COCV_2008__14_4_864_0
Bernot, Marc; Figalli, Alessio. Synchronized traffic plans and stability of optima. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 864-878. doi: 10.1051/cocv:2008012
[1] , and , Functions of bounded variations and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press (2000). | Zbl | MR
[2] , Irrigation and Optimal Transport. Ph.D. thesis, École Normale Supérieure de Cachan, France (2005). Available at http://www.umpa.ens-lyon.fr/ mbernot.
[3] , and , Traffic plans. Publ. Mat. 49 (2005) 417-451. | Zbl | MR
[4] , and , The structure of branched transportation networks. Calc. Var. Partial Differential Equations (online first). DOI: 10.1007/s00526-007-0139-0. | Zbl | MR
[5] , and , Path functionals over Wasserstein spaces. J. EMS 8 (2006) 414-434. | Zbl | MR
[6] , On Growth and Form. Cambridge University Press (1942). | Zbl | MR
[7] , Real Analysis and Probability. Cambridge University Press (2002). | Zbl | MR
[8] , Minimum cost communication networks. Bell System Tech. J. 46 (1967) 2209-2227.
[9] , On the transfer of masses. Dokl. Acad. Nauk. USSR 37 (1942) 7-8.
[10] , and , A variational model of irrigation patterns. Interfaces and Free Boundaries 5 (2003) 391-416. | Zbl | MR
[11] , Mémoire sur la théorie des déblais et de remblais. Histoire de l'Académie Royale des Sciences de Paris (1781) 666-704.
[12] , , Biomathematics Texts 19. Springer (1993). | Zbl | MR
[13] , The chemical basis of morphogenesis. Phil. Trans. Soc. Lond. B237 (1952) 37-72.
[14] , Topics in optimal transportation, Graduate Studies in Mathematics 58. American Mathematical Society, Providence, RI (2003). | Zbl | MR
[15] , Optimal paths related to transport problems. Commun. Contemp. Math. 5 (2003) 251-279. | Zbl | MR
Cité par Sources :






