Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving norms obtained by Nečas and on the general framework of -convergence theory.
Keywords: numerical methods, non-conforming approximations, $\Gamma $-convergence
@article{COCV_2008__14_4_802_0,
author = {Davini, Cesare and Paroni, Roberto},
title = {External approximation of first order variational problems via $W^{-1, p}$ estimates},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {802--824},
year = {2008},
publisher = {EDP Sciences},
volume = {14},
number = {4},
doi = {10.1051/cocv:2008011},
mrnumber = {2451798},
zbl = {1154.65054},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2008011/}
}
TY - JOUR
AU - Davini, Cesare
AU - Paroni, Roberto
TI - External approximation of first order variational problems via $W^{-1, p}$ estimates
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2008
SP - 802
EP - 824
VL - 14
IS - 4
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv:2008011/
DO - 10.1051/cocv:2008011
LA - en
ID - COCV_2008__14_4_802_0
ER -
%0 Journal Article
%A Davini, Cesare
%A Paroni, Roberto
%T External approximation of first order variational problems via $W^{-1, p}$ estimates
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2008
%P 802-824
%V 14
%N 4
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv:2008011/
%R 10.1051/cocv:2008011
%G en
%F COCV_2008__14_4_802_0
Davini, Cesare; Paroni, Roberto. External approximation of first order variational problems via $W^{-1, p}$ estimates. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 802-824. doi: 10.1051/cocv:2008011
[1] , and , Convergence of finite volume approximations for a nonlinear elliptic-parabolic problem: a “continuous” approach. SIAM J. Numer. Anal. 42 (2004) 228-251. | Zbl | MR
[2] , An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | Zbl | MR
[3] , , and , Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001-2002) 1749-1779. | Zbl | MR
[4] , Approximation des problèmes aux limites non homogènes pour des opérateurs non linéaires. J. Math. Anal. Appl. 30 (1970) 510-521. | Zbl | MR
[5] , The finite element method with penalty. Math. Comp. 27 (1973) 221-228. | Zbl | MR
[6] and , Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973) 863-875. | Zbl | MR
[7] , and , A discontinuous finite element method for diffusion problems: 1-D analysis. Comput. Math. Appl. 37 (1999) 103-122. | Zbl | MR
[8] and , Advances and applications of discontinuous Galerkin methods in CFD. Computational mechanics (Buenos Aires, 1998), Centro Internac. Métodos Numér. Ing., Barcelona (1998). | MR
[9] and , A discontinuous finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (1999) 311-341. | Zbl | MR
[10] and , An adaptive-order discontinuous Galerkin method for the solution of the Euler equations of gas dynamics. Internat. J. Numer. Methods Engrg. 47 (2000) 61-73. | Zbl | MR
[11] , Analyse fonctionnelle: Théorie et applications. Masson, Paris (1983). | Zbl | MR
[12] , The finite element method for elliptic problems. North Holland, Amsterdam (1978). | Zbl | MR
[13] , Basic error estimates for elliptic problems, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions Eds., North Holland, Amsterdam (1991). | Zbl | MR
[14] and , The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463. | Zbl | MR
[15] , and , The development of discontinuous Galerkin methods, in Discontinuous Galerkin methods (Newport, RI, 1999), Lect. Notes Comput. Sci. Eng. 11 (2000) 3-50. | Zbl | MR
[16] , Direct methods in the calculus of variations. Springer-Verlag, New York (1989). | Zbl | MR
[17] , An introduction to -convergence. Birkäuser, Boston (1993). | Zbl | MR
[18] , Piece-wise constant approximations in the membrane problem. Meccanica 38 (2003) 555-569. | Zbl | MR
[19] and , Approximations of degree zero in the Poisson problem. Comm. Pure Appl. Anal. 4 (2005) 267-281. | Zbl | MR
[20] and , Generalized Hessian and external approximations in variational problems of second order. J. Elasticity 70 (2003) 149-174. | Zbl | MR
[21] and , Error estimate of piece-wise constant approximations to the Poisson problem (in preparation).
[22] and , Relaxed notions of curvature and a lumped strain method for elastic plates. SIAM J. Numer. Anal. 35 (1998) 677-691. | Zbl | MR
[23] and , An unconstrained mixed method for the biharmonic problem. SIAM J. Numer. Anal. 38 (2000) 820-836. | Zbl | MR
[24] and , Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). | Zbl | MR
[25] , Problèmes aux limites non homogènes à données irrégulières : Une méthode d'approximation, in Numerical Analysis of Partial Differential Equations (C.I.M.E. 2 Ciclo, Ispra, 1967), Edizioni Cremonese, Rome (1968) 283-292. | Zbl | MR
[26] as, Équations aux dérivées partielles. Presses de l'Université de Montréal (1965). | Zbl
[27] , Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | Zbl | MR
[28] and , Triangular mesh method for neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos (1973).
[29] , An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | Zbl | MR
[30] , A new discontinuous finite volume method for elliptic problems. SIAM J. Numer. Anal. 42 (2004) 1062-1072. | Zbl | MR
Cité par Sources :





