Let be a function from the real mn-matrices to the real numbers. If is quasiconvex in the sense of the calculus of variations, then we show that can be approximated locally uniformly by quasiconvex polynomials.
Keywords: Stone-Weierstrass theorem, locally uniform convergence
@article{COCV_2008__14_4_795_0,
author = {Heinz, Sebastian},
title = {Quasiconvex functions can be approximated by quasiconvex polynomials},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {795--801},
year = {2008},
publisher = {EDP Sciences},
volume = {14},
number = {4},
doi = {10.1051/cocv:2008010},
mrnumber = {2451797},
zbl = {1148.49012},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2008010/}
}
TY - JOUR AU - Heinz, Sebastian TI - Quasiconvex functions can be approximated by quasiconvex polynomials JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 795 EP - 801 VL - 14 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2008010/ DO - 10.1051/cocv:2008010 LA - en ID - COCV_2008__14_4_795_0 ER -
%0 Journal Article %A Heinz, Sebastian %T Quasiconvex functions can be approximated by quasiconvex polynomials %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 795-801 %V 14 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2008010/ %R 10.1051/cocv:2008010 %G en %F COCV_2008__14_4_795_0
Heinz, Sebastian. Quasiconvex functions can be approximated by quasiconvex polynomials. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 795-801. doi: 10.1051/cocv:2008010
[1] and , An example of a quasiconvex function that is not polyconvex in two dimensions. Arch. Rational Mech. Anal. 117 (1992) 155-166. | Zbl | MR
[2] , Some open problems in elasticity, in Geometry, Mechanics, and Dynamics - Volume in Honor of the 60th Birthday of J.E. Marsden, P. Newton, P. Holmes and A. Weinstein Eds., Springer-Verlag (2002) 3-59. | Zbl | MR
[3] , Direct Methods in the Calculus of Variations. Springer-Verlag (1989). | Zbl | MR
[4] and , Tartar’s conjecture and localization of the quasiconvex hull in . Max Planck Institute for Mathematics in the Sciences, Preprint N 60 (2006). | MR
[5] , A necessary condition for the quasiconvexity of polynomials of degree four. J. Convex Anal. 13 (2006) 51-60. | Zbl | MR
[6] , Nonlinear Cauchy-Riemann operators in . Trans. Amer. Math. Soc. 354 (2002) 1961-1995. | Zbl | MR
[7] and , A construction of quasiconvex functions. Rivista di Matematica Università di Parma 4 (2005) 75-89. | Zbl | MR
[8] , On the non-locality of quasiconvexity. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 1-13. | Zbl | MR | Numdam
[9] , Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952) 25-53. | Zbl | MR
[10] , A sharp version of Zhang's theorem on truncating sequences of gradients. Trans. Amer. Math. Soc. 351 (1999) 4585-4597. | Zbl | MR
[11] , Rank-one convexity implies quasiconvexity on diagonal matrices. Internat. Math. Res. Not. 20 (1999) 1087-1095. | Zbl | MR
[12] , Partial differential equations, Foundations and Integral Representations 1. Springer-Verlag (2006). | MR
[13] , Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh 120A (1992) 185-189. | Zbl | MR
Cité par Sources :





