Here, we prove the uniform observability of a two-grid method for the semi-discretization of the -wave equation for a time ; this time, if the observation is made in , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I 338 (2004) 413-418]. Our proof follows an Ingham type approach.
Keywords: uniform observability, two-grid method, Ingham type theorem
@article{COCV_2008__14_3_604_0,
author = {Mehrenberger, Michel and Loreti, Paola},
title = {An {Ingham} type proof for a two-grid observability theorem},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {604--631},
year = {2008},
publisher = {EDP Sciences},
volume = {14},
number = {3},
doi = {10.1051/cocv:2007062},
mrnumber = {2434069},
zbl = {1157.35415},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2007062/}
}
TY - JOUR AU - Mehrenberger, Michel AU - Loreti, Paola TI - An Ingham type proof for a two-grid observability theorem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 604 EP - 631 VL - 14 IS - 3 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007062/ DO - 10.1051/cocv:2007062 LA - en ID - COCV_2008__14_3_604_0 ER -
%0 Journal Article %A Mehrenberger, Michel %A Loreti, Paola %T An Ingham type proof for a two-grid observability theorem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 604-631 %V 14 %N 3 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007062/ %R 10.1051/cocv:2007062 %G en %F COCV_2008__14_3_604_0
Mehrenberger, Michel; Loreti, Paola. An Ingham type proof for a two-grid observability theorem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 3, pp. 604-631. doi: 10.1051/cocv:2007062
[1] and , Boundary controllability of a linear semi-discrete 1D wave equation derived from a mixed finite element method. Numer. Math. 102 (2006) 413-462. | Zbl | MR
[2] , and , A numerical approach to the exact boundary controllability of the wave equation (I), Dirichlet controls: Description of the numerical methods. Japan. J. Appl. Math. 7 (1990) 1-76. | Zbl | MR
[3] , Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465. | Zbl | MR
[4] , Propiedades cualitativas de esquemas numéricos de aproximción de ecuaciones de difusión y de dispersión. Ph.D. thesis, Universidad Autónoma de Madrid, Spain (2006).
[5] and , Boundary observability for the space discretization of the 1D wave equation. ESAIM: M2AN 33 (1999) 407-438. | Zbl | MR | Numdam
[6] , Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41 (1936) 367-379. | Zbl | MR
[7] , Exact Controllability and Stabilization. The Multiplier Method. Wiley, Chichester; Masson, Paris (1994). | Zbl | MR
[8] and , Fourier Series in Control Theory, Springer Monographs in Mathematics. Springer-Verlag, New York (2005). | Zbl | MR
[9] , Contrôlabilité Exacte, Stabilisation et Perturbation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte. Masson, Paris, RMA 8 (1988). | Zbl | MR
[10] and , Partial exact controllability for spherical membranes. SIAM J. Control Optim. 35 (1997) 641-653. | Zbl | MR
[11] , Uniform boundary controllability of a semi-discrete 1D wave equation. Numer. Math. 91 (2002) 723-766. | Zbl | MR
[12] and , Boundary controllability of a linear hybrid system arising in the control of noise. SIAM J. Cont. Optim. 35 (1997) 1614-1638. | Zbl | MR
[13] , Family of implicit and controllable schemes for the 1D wave equation. C. R. Acad. Sci. Paris Sér. I 339 (2004) 733-738. | Zbl | MR
[14] , Numerical methods for the analysis of the propagation, observation and control of waves. Ph.D. thesis, Universidad Complutense Madrid, Spain (2003). Available at http://www.uam.es/proyectosinv/cen/indocumentos.html
[15] and , Convergence of a multigrid method for the controllability of a 1D wave equation. C. R. Acad. Sci. Paris, Sér. I 338 (2004) 413-418. | Zbl | MR
[16] and , Discrete Ingham inequalities and applications. SIAM J. Numer. Anal. 44 (2006) 412-448. | Zbl | MR
[17] , Propagation, observation, control and numerical approximation of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197-243. | Zbl | MR
[18] , Control and numerical approximation of the wave and heat equations, in Proceedings of the ICM 2006, Vol. III, “Invited Lectures", European Mathematical Society Publishing House, M. Sanz-Solé et al. Eds. (2006) 1389-1417. | Zbl | MR
Cité par Sources :






