We consider a quantum particle in a 1D infinite square potential well with variable length. It is a nonlinear control system in which the state is the wave function of the particle and the control is the length of the potential well. We prove the following controllability result : given close enough to an eigenstate corresponding to the length and close enough to another eigenstate corresponding to the length , there exists a continuous function with , such that and , and which moves the wave function from to in time . In particular, we can move the wave function from one eigenstate to another one by acting on the length of the potential well in a suitable way. Our proof relies on local controllability results proved with moment theory, a Nash-Moser implicit function theorem and expansions to the second order.
Keywords: controllability, Schrödinger equation, Nash-Moser theorem, moment theory
@article{COCV_2008__14_1_105_0,
author = {Beauchard, Karine},
title = {Controllability of a quantum particle in a {1D} variable domain},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {105--147},
publisher = {EDP Sciences},
volume = {14},
number = {1},
year = {2008},
doi = {10.1051/cocv:2007047},
mrnumber = {2375753},
zbl = {1132.35446},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2007047/}
}
TY - JOUR AU - Beauchard, Karine TI - Controllability of a quantum particle in a 1D variable domain JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 105 EP - 147 VL - 14 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007047/ DO - 10.1051/cocv:2007047 LA - en ID - COCV_2008__14_1_105_0 ER -
%0 Journal Article %A Beauchard, Karine %T Controllability of a quantum particle in a 1D variable domain %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 105-147 %V 14 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007047/ %R 10.1051/cocv:2007047 %G en %F COCV_2008__14_1_105_0
Beauchard, Karine. Controllability of a quantum particle in a 1D variable domain. ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 1, pp. 105-147. doi: 10.1051/cocv:2007047
[1] and , Notions of controllability for bilinear multilevel quantum systems. IEEE Trans. Automat. Control 48 (2003) 1399-1403. | MR
[2] and , Opérateurs pseudo-différentiels et théorème de Nash-Moser. Intereditions (Paris), collection Savoirs actuels (1991). | Zbl | MR
[3] , Controllability of quantum mechanical systems by root space decomposition of su(n). J. Math. Phys. 43 (2002) 2051-2062. | Zbl | MR
[4] , and , Controllability for distributed bilinear systems. SIAM J. Control Optim. 20 (1982). | Zbl | MR
[5] , A bilinear optimal control problem applied to a time dependent Hartree-Fock equation coupled with classical nuclear dynamics. Portugaliae Matematica (N.S.) 63 (2006) 293-325. | Zbl | MR | EuDML
[6] and , Constructive solution of a bilinear control problem. C.R. Math. Acad. Sci. Paris 342 (2006) 119-124. | Zbl | MR
[7] , and , Regularity for a Schrödinger equation with singular potential and application to bilinear optimal control. J. Differential Equations 216 (2005) 188-222. | Zbl | MR
[8] , Local controllability of a 1-D beam equation. SIAM J. Control Optim. (to appear). | MR | Zbl
[9] , Local Controllability of a 1-D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851-956. | Zbl | MR
[10] and , Controllability of a quantum particle in a moving potential well. J. Functional Analysis 232 (2006) 328-389. | MR
[11] , Lie theory and control systems defined on spheres. SIAM J. Appl. Math. 25 (1973) 213-225. | Zbl | MR
[12] , and , Contrôle optimal bilinéaire d'une équation de Schrödinger. C.R. Acad. Sci. Paris, Série I 330 (2000) 567-571. | Zbl | MR
[13] , Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295-312. | Zbl | MR
[14] , Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris 317 (1993) 271-276. | Zbl | MR
[15] , On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. | Zbl | MR
[16] , Local Controllability of a 1-D Tank Containing a Fluid Modeled by the shallow water equations. ESAIM: COCV 8 (2002) 513-554. | Zbl | MR | Numdam
[17] , On the small-time local controllability of a quantum particule in a moving one-dimensional infinite square potential well. C.R. Acad. Sci., Série I 342 (2006) 103-108. | Zbl | MR
[18] and , Exact boundary controllability of a nonlinear KdV equation with critical lengths. J. Eur. Math. Soc. 6 (2004) 367-398. | Zbl | MR
[19] and , Global exact controllability of the 2D Navier-Stokes equation on a manifold without boundary. Russ. J. Math. Phys. 4 (1996) 429-448. | Zbl | MR
[20] and , Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Math. Surveys 54 (1999) 565-618. | Zbl | MR
[21] , On the controllability of the 1D isentropic Euler equation. J. European Mathematical Society 9 (2007) 427-486. | Zbl | MR
[22] , Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1-44. | Zbl | MR | Numdam
[23] , On the controllability of the Vlasov-Poisson system. J. Differential Equations 195 (2003) 332-379. | Zbl | MR
[24] , Partial Differential Relations. Springer-Verlag, Berlin-New York-London (1986). | Zbl | MR
[25] , Séries lacunaires et contrôle semi-interne des vibrations d'une plaque rectangulaire. J. Math. Pures Appl. 68 (1989) 457-465. | Zbl | MR
[26] , On the Nash-Moser Implicit Function Theorem. Annales Academiae Scientiarum Fennicae (1985) 255-259. | Zbl | MR
[27] , On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83-95. | Zbl | MR | Numdam
[28] , and , Limitations on the control of Schrödinger equations. ESAIM: COCV 12 (2006) 615-635. | MR | Numdam
[29] , Perturbation Theory for Linear operators. Springer-Verlag, Berlin, New-York (1966). | Zbl | MR
[30] , On moment theory and controllability of one-dimensional vibrating systems and heating processes. Springer - Verlag (1992). | Zbl | MR
[31] and , Optimal regularity, exact controllability and uniform stabilization of Schrödinger equations with Dirichlet controls. Differential Integral Equations 5 (1992) 571-535. | Zbl | MR
[32] , and , Global uniqueness, observability and stabilization of nonconservative Schrödinger equations via pointwise Carlemann estimates. J. Inverse Ill Posed-Probl. 12 (2004) 183-231. | Zbl | MR
[33] , Contrôle de l'équation de Schrödinger. J. Math. Pures Appl. 71 (1992) 267-291. | Zbl
[34] Machtyngier, Exact controllability for the Schrödinger equation. SIAM J. Contr. Opt. 32 (1994) 24-34. | Zbl
[35] and , Controllability of quantum harmonic oscillators. IEEE Trans. Automat. Control 49 (2004) 745-747. | MR
[36] , Control of systems without drift via generic loops. IEEE Trans. Automat. Control 40 (1995) 1210-1219. | Zbl | MR
[37] , On the controllability of bilinear quantum systems, in Mathematical Models and Methods for Ab Initio Quantum Chemistry, C. Le Bris and M. Defranceschi Eds., Lect. Notes Chemistry 74, Springer (2000). | Zbl | MR
[38] , Remarks on the controllability of the Schrödinger equation. CRM Proc. Lect. Notes 33 (2003) 193-211. | MR
Cited by Sources:






