The propagation of fractures in a solid undergoing cyclic loadings is known as the fatigue phenomenon. In this paper, we present a time continuous model for fatigue, in the special situation of the debonding of thin layers, coming from a time discretized version recently proposed by Jaubert and Marigo [C. R. Mecanique 333 (2005) 550-556]. Under very general assumptions on the surface energy density and on the applied displacement, we discuss the well-posedness of our problem and we give the main properties of the evolution process.
Keywords: variational models, quasistatic evolution, rate-independent processes, fatigue, fractures
@article{COCV_2008__14_2_233_0,
author = {Ferriero, Alessandro},
title = {Quasi-static evolution for fatigue debonding},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {233--253},
year = {2008},
publisher = {EDP Sciences},
volume = {14},
number = {2},
doi = {10.1051/cocv:2007046},
mrnumber = {2394509},
zbl = {1133.74041},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2007046/}
}
TY - JOUR AU - Ferriero, Alessandro TI - Quasi-static evolution for fatigue debonding JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 233 EP - 253 VL - 14 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007046/ DO - 10.1051/cocv:2007046 LA - en ID - COCV_2008__14_2_233_0 ER -
%0 Journal Article %A Ferriero, Alessandro %T Quasi-static evolution for fatigue debonding %J ESAIM: Control, Optimisation and Calculus of Variations %D 2008 %P 233-253 %V 14 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007046/ %R 10.1051/cocv:2007046 %G en %F COCV_2008__14_2_233_0
Ferriero, Alessandro. Quasi-static evolution for fatigue debonding. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 233-253. doi: 10.1051/cocv:2007046
[1] and , Convexity and optimization in Banach spaces. D. Reidel Publishing Co., Dordrecht (1986). | Zbl | MR
[2] , Direct methods in the calculus of variations. Springer-Verlag, Berlin (1989). | Zbl | MR
[3] and , A model for the quasi-static evolution of brittle fractures: existence and approximation results. Arch. Rational Mech. Anal 162 (2002) 102-135. | Zbl | MR
[4] , and , Quasi-static crack growth in finite elasticity. Arch. Rational Mech. Anal 176 (2005) 165-225. | Zbl | MR
[5] and , A variational view of partial brittle damage evolution. Arch. Rational Mech. Anal 182 (2006) 125-152. | Zbl | MR
[6] and , Existence and convergence for quasi-static evolution in brittle fractures. Comm. Pure Applied Math 56 (2003) 1495-1500. | Zbl | MR
[7] and , Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46 (1998) 1319-1342. | Zbl | MR
[8] and , Existence results for a class of rate-independent material models with nonconvex elastic energies. J. reine angew. Mathematik 595 (2006) 55-91. | Zbl | MR
[9] , Variational principles and free-boundary problems. Wiley-Interscience (1982). | Zbl | MR
[10] , The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London Ser A 221 (1920) 163-198.
[11] and , L'approche variationnelle de la fatigue: des premiers résultats. C. R. Mecanique 333 (2005) 550-556.
[12] and , Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math 42 (1989) 577-685. | Zbl | MR
[13] , Bases mathématiques du calcul des probabilités. Masson Cie, Paris (1970). | Zbl | MR
[14] and , Measure and integral. Marcel Dekker (1977). | Zbl | MR
Cité par Sources :





