We prove partial regularity with optimal Hölder exponent of vector-valued minimizers of the quasiconvex variational integral under polynomial growth. We employ the indirect method of the bilinear form.
Keywords: partial regularity, optimal regularity, minimizer, calculus of variations, quasiconvexity
@article{COCV_2007__13_4_639_0,
author = {Hamburger, Christoph},
title = {Optimal partial regularity of minimizers of quasiconvex variational integrals},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {639--656},
publisher = {EDP Sciences},
volume = {13},
number = {4},
year = {2007},
doi = {10.1051/cocv:2007039},
mrnumber = {2351395},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2007039/}
}
TY - JOUR AU - Hamburger, Christoph TI - Optimal partial regularity of minimizers of quasiconvex variational integrals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 639 EP - 656 VL - 13 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007039/ DO - 10.1051/cocv:2007039 LA - en ID - COCV_2007__13_4_639_0 ER -
%0 Journal Article %A Hamburger, Christoph %T Optimal partial regularity of minimizers of quasiconvex variational integrals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 639-656 %V 13 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007039/ %R 10.1051/cocv:2007039 %G en %F COCV_2007__13_4_639_0
Hamburger, Christoph. Optimal partial regularity of minimizers of quasiconvex variational integrals. ESAIM: Control, Optimisation and Calculus of Variations, Volume 13 (2007) no. 4, pp. 639-656. doi: 10.1051/cocv:2007039
[1] and, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261-281. | Zbl
[2] , and, Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000) 665-687. | Zbl
[3] , Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227-252. | Zbl
[4] and, Blowup, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J. 36 (1987) 361-371. | Zbl
[5] and, partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1985) 121-143. | Zbl | EuDML
[6] , Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton Univ. Press, Princeton (1983). | Zbl | MR
[7] , The problem of the regularity of minimizers. Proc. Int. Congr. Math., Berkeley 1986 (1987) 1072-1083. | Zbl
[8] , Quasiconvexity, growth conditions and partial regularity. Partial differential equations and calculus of variations, Lect. Notes Math. 1357 (1988) 211-237. | Zbl
[9] and, On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31-46. | Zbl
[10] and, Differentiability of minima of non-differentiable functionals. Invent. Math. 72 (1983) 285-298. | Zbl
[11] and, Sharp estimates for the derivatives of local minima of variational integrals. Boll. Unione Mat. Ital. 3A (1984) 239-248. | Zbl
[12] and, Partial regularity for minima of variational integrals. Ark. Mat. 25 (1987) 221-229. | Zbl
[13] and, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 185-208. | Zbl | Numdam
[14] , Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994). | Zbl | MR
[15] , Partial regularity for minimizers of variational integrals with discontinuous integrands. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996) 255-282. | Zbl | Numdam
[16] , A new partial regularity proof for solutions of nonlinear elliptic systems. Manuscr. Math. 95 (1998) 11-31. | Zbl
[17] , Partial regularity of minimizers of polyconvex variational integrals. Calc. Var. 18 (2003) 221-241. | Zbl
[18] , Partial regularity of solutions of nonlinear quasimonotone systems. Hokkaido Math. J. 32 (2003) 291-316. | Zbl
[19] , Partial boundary regularity of solutions of nonlinear superelliptic systems. Boll. Unione Mat. Ital. 10B (2007) 63-81.
[20] , Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl. 149 (1987) 311-328. | Zbl
[21] and, The singular set of -minima. Arch. Ration. Mech. Anal. 177 (2005) 93-114. | Zbl
[22] and, The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006) 331-398. | Zbl
[23] and, The singular set of Lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal. 184 (2007) 341-369. | Zbl
[24] , A minimization problem and the regularity of solutions in the presence of a free boundary. Indiana Univ. Math. J. 32 (1983) 1-17. | Zbl
Cited by Sources:





