We study the asymptotic behaviour of a sequence of strongly degenerate parabolic equations with , . The main problem is the lack of compactness, by-passed via a regularity result. As particular cases, we obtain -convergence for elliptic operators , -convergence for parabolic operators , singular perturbations of an elliptic operator and , possibly .
Keywords: $G$-convergence, PDE of mixed type, linear elliptic and parabolic equations
@article{COCV_2007__13_4_669_0,
author = {Paronetto, Fabio},
title = {Asymptotic behaviour of a class of degenerate elliptic-parabolic operators : a unitary approach},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {669--691},
year = {2007},
publisher = {EDP Sciences},
volume = {13},
number = {4},
doi = {10.1051/cocv:2007029},
mrnumber = {2351397},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2007029/}
}
TY - JOUR AU - Paronetto, Fabio TI - Asymptotic behaviour of a class of degenerate elliptic-parabolic operators : a unitary approach JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 669 EP - 691 VL - 13 IS - 4 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007029/ DO - 10.1051/cocv:2007029 LA - en ID - COCV_2007__13_4_669_0 ER -
%0 Journal Article %A Paronetto, Fabio %T Asymptotic behaviour of a class of degenerate elliptic-parabolic operators : a unitary approach %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 669-691 %V 13 %N 4 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007029/ %R 10.1051/cocv:2007029 %G en %F COCV_2007__13_4_669_0
Paronetto, Fabio. Asymptotic behaviour of a class of degenerate elliptic-parabolic operators : a unitary approach. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 669-691. doi: 10.1051/cocv:2007029
[1] and, Singular and Degenerate Cauchy Problems. Academic Press, New York (1976). | MR
[2] , and, G-convergence of monotone operators. Ann. Inst. H. Poincaré, Anal. Non Linéaire 7 (1990) 123-160. | Zbl | Numdam
[3] and, Sur la convergence de solutions d'équations paraboliques. J. Math. Pur. Appl. 56 (1977) 263-306. | Zbl
[4] , An introduction to -convergence. Birkhäuser, Boston (1993). | Zbl | MR
[5] and, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Boll. Un. Mat. Ital. 8 (1973) 391-411. | Zbl
[6] and, Measure Theory and Fine Properties of Functions. CRC Press, USA (1992). | Zbl | MR
[7] , G-convergence and Homogenization of Nonlinear Partial Differential Operators. Kluwer Academic Publishers, Dordrecht (1997). | Zbl | MR
[8] , Existence results for a class of evolution equations of mixed type. J. Funct. Anal. 212 (2004) 324-356. | Zbl
[9] , Homogenization of degenerate elliptic-parabolic equations. Asymptotic Anal. 37 (2004) 21-56. | Zbl
[10] , Degenerate parabolic initial-boundary value problems. J. Diff. Eq. 31 (1979) 296-312. | Zbl
[11] , Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society (1997). | Zbl | MR
[12] , Compact sets in the space . Ann. Mat. Pura Appl. 146 (1987) 65-96. | Zbl
[13] , Sul limite delle soluzioni di problemi di Cauchy relativi all'equazione del calore. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 21 (1967) 657-699. | Zbl | Numdam
[14] , Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968) 571-597. | Zbl | Numdam
[15] , Convergence of parabolic equations. Boll. Un. Mat. Ital. 14-B (1977) 547-568. | Zbl
[16] , Convergence d'operateurs defferentiels, Proceedings of the Meeting “Analisi convessa e Applicazioni”. Roma (1974).
[17] , Cours Peccot, Collège de France, 1977. Partially written in: F. Murat, H-convergence - Séminaire d'Analyse Fonctionnelle et Numérique, Université d'Alger, 1977-78. English translation: F. Murat and L. Tartar: H-Convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev, R. Kohn, Editors, Birkhäuser, Boston (1997) 21-43. | Zbl
Cité par Sources :





