We propose a necessary and sufficient condition about the existence of variations, i.e., of non trivial solutions to the differential inclusion .
Keywords: variations, differential inclusions, necessary conditions
@article{COCV_2007__13_2_331_0,
author = {Bertone, Simone and Cellina, Arrigo},
title = {On the existence of variations, possibly with pointwise gradient constraints},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {331--342},
year = {2007},
publisher = {EDP Sciences},
volume = {13},
number = {2},
doi = {10.1051/cocv:2007017},
mrnumber = {2306639},
zbl = {1124.49012},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2007017/}
}
TY - JOUR AU - Bertone, Simone AU - Cellina, Arrigo TI - On the existence of variations, possibly with pointwise gradient constraints JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 331 EP - 342 VL - 13 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2007017/ DO - 10.1051/cocv:2007017 LA - en ID - COCV_2007__13_2_331_0 ER -
%0 Journal Article %A Bertone, Simone %A Cellina, Arrigo %T On the existence of variations, possibly with pointwise gradient constraints %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 331-342 %V 13 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2007017/ %R 10.1051/cocv:2007017 %G en %F COCV_2007__13_2_331_0
Bertone, Simone; Cellina, Arrigo. On the existence of variations, possibly with pointwise gradient constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 2, pp. 331-342. doi: 10.1051/cocv:2007017
[1] , Mathematical methods of classical mechanics, Graduate Texts in Mathematics 60, Springer-Verlag, New York, Heidelber, Berlin. | Zbl | MR
[2] , Analyse fonctionnelle, théorie et applications. Masson, Paris (1983). | Zbl | MR
[3] , On minima of a functional of the gradient: necessary conditions. Nonlinear Anal. 20 (1993) 337-341. | Zbl
[4] , On minima of a functional of the gradient: sufficient conditions. Nonlinear Anal. 20 (1993) 343-347. | Zbl
[5] and, On the validity of the maximum principle and of the Euler-Lagrange equation for a minimum problem depending on the gradient. SIAM J. Control Optim. 36 (1998) 1987-1998. | Zbl
[6] , Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, Rhode Island (1998). | Zbl | MR
[7] and, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 137 (1999) 653. | Zbl | MR
[8] and, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL (1992). | Zbl | MR
[9] , On Lindelöf's theorem in the theory of differential equations. Jap. J. Math. 16 (1939) 149-161. | JFM
Cité par Sources :






