Let be a real Hilbert space, a convex function of class that we wish to minimize under the convex constraint . A classical approach consists in following the trajectories of the generalized steepest descent system (cf. Brézis [5]) applied to the non-smooth function . Following Antipin [1], it is also possible to use a continuous gradient-projection system. We propose here an alternative method as follows: given a smooth convex function whose critical points coincide with and a control parameter tending to zero, we consider the “Steepest Descent and Control” system
Keywords: dissipative dynamical system, steepest descent method, constrained optimization, convex minimization, asymptotic behaviour, non-linear oscillator
@article{COCV_2004__10_2_243_0,
author = {Cabot, Alexandre},
title = {The steepest descent dynamical system with control. {Applications} to constrained minimization},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {243--258},
year = {2004},
publisher = {EDP Sciences},
volume = {10},
number = {2},
doi = {10.1051/cocv:2004005},
mrnumber = {2083486},
zbl = {1072.49004},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2004005/}
}
TY - JOUR AU - Cabot, Alexandre TI - The steepest descent dynamical system with control. Applications to constrained minimization JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 243 EP - 258 VL - 10 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004005/ DO - 10.1051/cocv:2004005 LA - en ID - COCV_2004__10_2_243_0 ER -
%0 Journal Article %A Cabot, Alexandre %T The steepest descent dynamical system with control. Applications to constrained minimization %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 243-258 %V 10 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004005/ %R 10.1051/cocv:2004005 %G en %F COCV_2004__10_2_243_0
Cabot, Alexandre. The steepest descent dynamical system with control. Applications to constrained minimization. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 243-258. doi: 10.1051/cocv:2004005
[1] , Minimization of convex functions on convex sets by means of differential equations. Differ. Equ. 30 (1994) 1365-1375 (1995). | Zbl | MR
[2] , Equations différentielles ordinaires. Éditions de Moscou (1974). | Zbl | MR
[3] and, A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Differ. Equ. 128 (1996) 519-540. | Zbl | MR
[4] and, Asymptotic control and stabilization of nonlinear oscillators with non isolated equilibria. J. Differ. Equ. 179 (2002) 278-310. | Zbl | MR
[5] , Opérateurs maximaux monotones dans les espaces de Hilbert et équations d'évolution. Lect. Notes 5 (1972).
[6] , Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18 (1975) 15-26. | Zbl | MR
[7] and, Asymptotic control of pairs of oscillators coupled by a repulsion, with non isolated equilibria. SIAM J. Control Optim. 41 (2002) 1254-1280. | Zbl | MR
[8] , Systèmes dynamiques dissipatifs et applications. RMA 17, Masson, Paris (1991). | Zbl | MR
[9] and, Differential equations, dynamical systems and linear algebra. Academic Press, New York (1974). | Zbl | MR
[10] and, Stability by Lyapounov's Direct Method with Applications. Academic Press, New York (1961). | Zbl
[11] , Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591-597. | Zbl | MR
[12] , Equations différentielles1989). | Zbl | MR
[13] and, Méthodes de résolution de problèmes mal posés. MIR (1976). | MR
Cité par Sources :





