We prove that the Paneitz energy on the standard three-sphere is bounded from below and extremal metrics must be conformally equivalent to the standard metric.
Keywords: Paneitz operator, symmetrization, extremal metric
@article{COCV_2004__10_2_211_0,
author = {Yang, Paul and Zhu, Meijun},
title = {On the {Paneitz} energy on standard three sphere},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {211--223},
year = {2004},
publisher = {EDP Sciences},
volume = {10},
number = {2},
doi = {10.1051/cocv:2004002},
mrnumber = {2083484},
zbl = {1072.58026},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2004002/}
}
TY - JOUR AU - Yang, Paul AU - Zhu, Meijun TI - On the Paneitz energy on standard three sphere JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 211 EP - 223 VL - 10 IS - 2 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2004002/ DO - 10.1051/cocv:2004002 LA - en ID - COCV_2004__10_2_211_0 ER -
%0 Journal Article %A Yang, Paul %A Zhu, Meijun %T On the Paneitz energy on standard three sphere %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 211-223 %V 10 %N 2 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2004002/ %R 10.1051/cocv:2004002 %G en %F COCV_2004__10_2_211_0
Yang, Paul; Zhu, Meijun. On the Paneitz energy on standard three sphere. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 2, pp. 211-223. doi: 10.1051/cocv:2004002
[1] , and, Self-similar solutions for the anisotropic affine curve shortening problem. Calc. Var. Partial Differ. Equ. 13 (2001) 311-337. | Zbl | MR
[2] , Differential operators canonically associated to a conformal structure. Math. Scand. 57 (1985) 293-345. | Zbl | MR
[3] and, Nonlinear biharmonic equation with negative exponent. Preprint (1999).
[4] , and, Paneitz type operators and applications. Duke Math. J. 104 (2000) 129-169. | Zbl | MR
[5] and, Conformal Invariants, in Élie Cartan et les Mathématiques d'aujourd'hui, Asterisque (1985) 95-116. | Zbl | Numdam
[6] and, Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients. Calc. Var. Partial Differ. Equ. 13 (2001) 491-517. | Zbl
[7] , Sharp Sobolev inequalities of second order. J. Geom. Anal. 13 (2003) 145-162. | Zbl | MR
[8] , A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds. Preprint (1983).
[9] , Elliptic equations and rearrangements. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1976) 697-718. | Zbl | MR | Numdam
[10] and, Classification of solutions of higher order conformally invariant equations. Math. Ann. 313 (1999) 207-228. | Zbl | MR
[11] and, On a fourth order equation in 3-D, A tribute to J.L. Lions. ESAIM: COCV 8 (2002) 1029-1042. | Zbl | MR | Numdam
Cité par Sources :





