The problem of invariant output tracking is considered: given a control system admitting a symmetry group , design a feedback such that the closed-loop system tracks a desired output reference and is invariant under the action of . Invariant output errors are defined as a set of scalar invariants of ; they are calculated with the Cartan moving frame method. It is shown that standard tracking methods based on input-output linearization can be applied to these invariant errors to yield the required “symmetry-preserving” feedback.
Keywords: symmetries, invariants, nonlinear control, output tracking, decoupling
Martin, Philippe  ; Rouchon, Pierre  ; Rudolph, Joachim 1
@article{COCV_2004__10_1_1_0,
author = {Martin, Philippe and Rouchon, Pierre and Rudolph, Joachim},
title = {Invariant tracking},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {1--13},
year = {2004},
publisher = {EDP Sciences},
volume = {10},
number = {1},
doi = {10.1051/cocv:2003037},
mrnumber = {2084252},
zbl = {1088.93016},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2003037/}
}
TY - JOUR AU - Martin, Philippe AU - Rouchon, Pierre AU - Rudolph, Joachim TI - Invariant tracking JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2004 SP - 1 EP - 13 VL - 10 IS - 1 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2003037/ DO - 10.1051/cocv:2003037 LA - en ID - COCV_2004__10_1_1_0 ER -
%0 Journal Article %A Martin, Philippe %A Rouchon, Pierre %A Rudolph, Joachim %T Invariant tracking %J ESAIM: Control, Optimisation and Calculus of Variations %D 2004 %P 1-13 %V 10 %N 1 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2003037/ %R 10.1051/cocv:2003037 %G en %F COCV_2004__10_1_1_0
Martin, Philippe; Rouchon, Pierre; Rudolph, Joachim. Invariant tracking. ESAIM: Control, Optimisation and Calculus of Variations, Tome 10 (2004) no. 1, pp. 1-13. doi: 10.1051/cocv:2003037
[1] ,, and, Nonholonomic mechanical systems with symmetry. Arch. Rational Mech. Anal. 136 (1996) 21-99. | Zbl | MR
[2] and, Tracking for fully actuated mechanical systems: A geometric framework. Automatica 35 (1999) 17-34. | Zbl | MR
[3] and, Filtrations in feedback synthesis: Part I - Systems and feedbacks. Forum Math. 10 (1998) 147-174. | Zbl
[4] and, Dynamic decoupling for right invertible nonlinear systems. Systems Control Lett. 8 (1988) 345-349. | Zbl | MR
[5] and, Representations of symmetric linear dynamical systems. SIAM J. Control Optim. 31 (1993) 1267-1293. | Zbl | MR
[6] and, The structure of nonlinear systems possessing symmetries. IEEE Trans. Automat. Control 30 (1985) 248-258. | Zbl | MR
[7] , Nonlinear Control Systems, 2nd Edition. Springer, New York (1989). | MR
[8] , Symmetries of nonlinear control systems and their symbols, in Canadian Math. Conf. Proceed., Vol. 25 (1998) 183-198. | Zbl | MR
[9] and, Optimal control for holonomic and nonholonomic mechanical systems with symmetry and Lagrangian reduction. SIAM J. Control Optim. 35 (1997) 901-929. | Zbl | MR
[10] and, Introduction to Mechanics and Symmetry. Springer-Verlag, New York (1994). | Zbl | MR
[11] , and, Flat systems1997) 211-264. Plenary lectures and Mini-courses. | Zbl | MR
[12] , Right-invertibility for a class of nonlinear control systems: A geometric approach. Systems Control Lett. 7 (1986) 125-132. | Zbl | MR
[13] and, Nonlinear Dynamical Control Systems. Springer-Verlag (1990). | Zbl | MR
[14] , Equivalence, Invariants and Symmetry. Cambridge University Press (1995). | Zbl | MR
[15] , Classical Invariant Theory. Cambridge University Press (1999). | Zbl | MR
[16] and, On local right-invertibility of nonlinear control system. Control Theory Adv. Tech. 4 (1988) 325-348. | MR
[17] and, Nonlinearizable single-input control systems do not admit stationary symmetries. Systems Control Lett. 46 (2002) 1-16. | Zbl | MR
[18] and, Invariant tracking and stabilization: problem formulation and examples. Springer, Lecture Notes in Control and Inform. Sci. 246 (1999) 261-273. | Zbl | MR
[19] , Symmetries in optimal control. SIAM J. Control Optim. 25 (1987) 245-259. | Zbl | MR
[20] , Flatness-based control of a nonholonomic mobile platform. Z. Angew. Math. Mech. 78 (1998) 43-46. | Zbl
Cité par Sources :






