We investigate the asymptotic behaviour, as , of a class of monotone nonlinear Neumann problems, with growth (), on a bounded multidomain . The multidomain is composed of two domains. The first one is a plate which becomes asymptotically flat, with thickness in the direction, as . The second one is a “forest” of cylinders distributed with -periodicity in the first directions on the upper side of the plate. Each cylinder has a small cross section of size and fixed height (for the case , see the figure). We identify the limit problem, under the assumption: . After rescaling the equation, with respect to , on the plate, we prove that, in the limit domain corresponding to the “forest” of cylinders, the limit problem identifies with a diffusion operator with respect to , coupled with an algebraic system. Moreover, the limit solution is independent of in the rescaled plate and meets a Dirichlet transmission condition between the limit domain of the “forest” of cylinders and the upper boundary of the plate.
Keywords: homogenization, oscillating boundaries, multidomain, monotone problem
Blanchard, Dominique  ; Gaudiello, Antonio 1
@article{COCV_2003__9__449_0,
author = {Blanchard, Dominique and Gaudiello, Antonio},
title = {Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {449--460},
year = {2003},
publisher = {EDP Sciences},
volume = {9},
doi = {10.1051/cocv:2003022},
mrnumber = {1998710},
zbl = {1071.35012},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2003022/}
}
TY - JOUR AU - Blanchard, Dominique AU - Gaudiello, Antonio TI - Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 449 EP - 460 VL - 9 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2003022/ DO - 10.1051/cocv:2003022 LA - en ID - COCV_2003__9__449_0 ER -
%0 Journal Article %A Blanchard, Dominique %A Gaudiello, Antonio %T Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 449-460 %V 9 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2003022/ %R 10.1051/cocv:2003022 %G en %F COCV_2003__9__449_0
Blanchard, Dominique; Gaudiello, Antonio. Homogenization of highly oscillating boundaries and reduction of dimension for a monotone problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 449-460. doi: 10.1051/cocv:2003022
[1] , Homogenization and Two-Scale Convergence. SIAM J. Math Anal. 23 (1992) 1482-1518. | Zbl | MR
[2] and, Boundary Layer Tails in Periodic Homogenization. ESAIM: COCV 4 (1999) 209-243. | Zbl | MR | Numdam
[3] and, Boundary Layer Correctors for the Solution of Laplace Equation in a Domain with Oscillating Boundary. J. Anal. Appl. 20 (2001) 929-940. | Zbl | MR
[4] and, Homogenization of Oscillating Boundaries and Applications to Thin Films. J. Anal. Math. 83 (2001) 151-183. | Zbl | MR
[5] , and, Homogenization of a Monotone Problem in a Domain with Oscillating Boundary. ESAIM: M2AN 33 (1999) 1057-1070. | Zbl | MR | Numdam
[6] and, Boundary Homogenization and Neumann Boundary Value Problem. Ricerche Mat. 46 (1997) 341-387. | Zbl | MR
[7] and, Reinforcement by a Thin Layer with Oscillating Thickness. Appl. Math. Optim. 16 (1987) 247-261. | MR
[8] , and, The Boundary Value Problem in a Domain with Very Rapidly Oscillating Boundary. J. Math. Anal. Appl. 231 (1999) 213-234. | Zbl | MR
[9] and, A Justification of the Two-Dimensional Linear Plate Model. J. Mécanique 18 (1979) 315-344. | Zbl | MR
[10] and, Homogenization in Open Sets with Holes. J. Math. Anal. Appl. 71 (1979) 590-607. | Zbl | MR
[11] ,, and, Homogenization of the -Laplacian in a Domain with Oscillating Boundary. Comm. Appl. Nonlinear Anal. 4 (1997) 1-23. | Zbl | MR
[12] , Asymptotic Behaviour of non-Homogeneous Neumann Problems in Domains with Oscillating Boundary. Ricerche Mat. 43 (1994) 239-292. | Zbl | MR
[13] , Homogenization of an Elliptic Transmission Problem. Adv. Math Sci. Appl. 5 (1995) 639-657. | Zbl | MR
[14] ,, and, Asymptotic Analysis for Monotone Quasilinear Problems in Thin Multidomains. Differential Integral Equations 15 (2002) 623-640. | Zbl | MR
[15] , and, Homogenization of the Ginzburg-Landau Equation in a Domain with Oscillating Boundary. Commun. Appl. Anal. (to appear). | Zbl
[16] ,,, and, On the Junction of Elastic Plates and Beams. C. R. Acad. Sci. Paris Sér. I 335 (2002) 717-722. | Zbl | MR
[17] , Problèmes variationnels dans les multi-domaines : modélisation des jonctions et applications. Masson, Paris (1991). | Zbl | MR
[18] , Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Paris (1969). | Zbl | MR
[19] , Homogenization of the Poisson Equations in a Thick Periodic Junction. ZAA J. Anal. Appl. 18 (1999) 953-975. | Zbl
[20] and, Asymptotics of the Neumann Spectral Problem Solution in a Domain of “Thick Comb” Type. J. Math. Sci. 85 (1997) 2326-2346. | Zbl
[21] , A General Convergence Result for a Functional Related to the Theory of Homogenization. SIAM J. Math Anal. 20 (1989) 608-623. | Zbl | MR
[22] , Cours Peccot, Collège de France (March 1977). Partially written in F. Murat, H-Convergence, Séminaire d'analyse fonctionnelle et numérique de l'Université d'Alger (1977-78). English translation in Mathematical Modelling of Composite Materials, edited by A. Cherkaev and R.V. Kohn, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser-Verlag (1997) 21-44. | Zbl
Cité par Sources :






