We study the sequence , which is solution of in an open bounded set of and on , when tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the -function , and prove a non-existence result.
Keywords: elliptic equation, Orlicz space, measure, capacity
@article{COCV_2003__9__317_0,
author = {Fiorenza, Alberto and Prignet, Alain},
title = {Orlicz capacities and applications to some existence questions for elliptic {PDEs} having measure data},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {317--341},
year = {2003},
publisher = {EDP Sciences},
volume = {9},
doi = {10.1051/cocv:2003015},
mrnumber = {1966536},
zbl = {1075.35012},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2003015/}
}
TY - JOUR AU - Fiorenza, Alberto AU - Prignet, Alain TI - Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 317 EP - 341 VL - 9 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2003015/ DO - 10.1051/cocv:2003015 LA - en ID - COCV_2003__9__317_0 ER -
%0 Journal Article %A Fiorenza, Alberto %A Prignet, Alain %T Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 317-341 %V 9 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2003015/ %R 10.1051/cocv:2003015 %G en %F COCV_2003__9__317_0
Fiorenza, Alberto; Prignet, Alain. Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 317-341. doi: 10.1051/cocv:2003015
[1] and, Function spaces and potential theory. Springer-Verlag, Berlin, Grundlehren Math. Wiss. 314 (1996). | Zbl | MR
[2] , Bessel potentials in Orlicz spaces. Rev. Mat. Univ. Complut. Madrid 10 (1997) 55-79. | Zbl | MR
[3] , Some developments of Strongly Nonlinear Potential Theory. Libertas Math. 19 (1999) 155-170. | Zbl | MR
[4] and, Capacités dans les espaces d'Orlicz. Ann. Sci. Math. Québec 18 (1994) 1-23. | Zbl
[5] and, Singularités éliminables pour des équations semi-linéaires. Ann. Inst. Fourier (Grenoble) 34 (1984) 185-206. | Zbl | MR | Numdam
[6] ,,,, and, An theory of existence and uniqueness of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 240-273. | Zbl | MR | Numdam
[7] , and, A semilinear elliptic equation in . Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1975) 523-555. | Zbl | MR | Numdam
[8] and, Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations 17 (1992) 641-655. | Zbl | MR
[9] , Nonlinear elliptic equations involving measures, in Contributions to nonlinear partial differential equations (Madrid, 1981). Pitman, Boston, Mass.-London, Res. Notes in Math. 89 1983) 82-89. | Zbl | MR
[10] , Theory of Capacities, Ann. Inst. Fourier (Grenoble) 5 (1953-1954) 131-295 (Ch. 1, Thm 4.1, p. 142). | Zbl | MR | Numdam | EuDML
[11] ,, and, Renormalized solutions for elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa CL. Sci. 28 (1999) 741-808. | Zbl | MR | Numdam | EuDML
[12] and, Orlicz-Sobolev spaces and embedding theorems. J. Funct. Anal. 8 (1971) 52-75. | Zbl | MR
[13] , An inequality for Jensen Means. Nonlinear Anal. 16 (1991) 191-198. | Zbl | MR
[14] and, Resolution of a semilinear equation in . Proc. Roy. Soc. Edinburgh 96 (1984) 275-288. | Zbl | MR
[15] and, Interpolation of Orlicz spaces. Studia Math. 60 (1977) 33-59. | Zbl | MR | EuDML
[16] and, Weighted inequalities in Lorentz and Orlicz spaces. World Scientific (1991). | Zbl | MR
[17] and, Convex functions and Orlicz Spaces. Noordhoff Ltd. (1961). | Zbl | MR
[18] and, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93 (1965) 97-107. | Zbl | Numdam | MR | EuDML
[19] , Orlicz Spaces and Interpolation. Dep. de Matematica Univ. Estadual de Campinas, Campinas, Brazil (1989). | Zbl | MR
[20] , Coarea properties of Sobolev functions, in Proc. Function Spaces, Differential Operators and Nonlinear Analysis (The Hans Triebel Anniversary Volume). Birkhäuser, Basel (to appear). | Zbl | MR
[21] , and, Fine behavior of functions with gradient in a Lorentz space (in preparation).
[22] and, Nonlinear potential theory. Uspekhi Mat. Nauk 27 (1972) 67-138. English translation: Russian Math. Surveys 27 (1972) 71-148. | Zbl | MR
[23] and, Nonexistence of solutions for some nonlinear elliptic equations involving measures. Proc. Roy. Soc. Edinburgh Ser. A 130 (2000) 167-187. | Zbl | MR
[24] , Interpolation with a parameter function. Math. Scand. 59 (1986) 199-222. | Zbl | MR | EuDML
[25] and, Theory of Orlicz Spaces. Marcel Dekker (1991). | Zbl | MR
[26] , Hausdorff Measures. Cambridge University Press (1970). | Zbl | MR
[27] , Singular Integrals and Differentiability properties of functions. Princeton University Press (1970). | Zbl | MR
Cité par Sources :





