In this paper we study the lower semicontinuity problem for a supremal functional of the form with respect to the strong convergence in , furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.
Keywords: supremal functionals, lower semicontinuity, level convexity, calculus of variations, Mazur's lemma
@article{COCV_2003__9__135_0,
author = {Gori, Michele and Maggi, Francesco},
title = {On the lower semicontinuity of supremal functionals},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {135--143},
year = {2003},
publisher = {EDP Sciences},
volume = {9},
doi = {10.1051/cocv:2003005},
mrnumber = {1957094},
zbl = {1066.49010},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2003005/}
}
TY - JOUR AU - Gori, Michele AU - Maggi, Francesco TI - On the lower semicontinuity of supremal functionals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 135 EP - 143 VL - 9 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2003005/ DO - 10.1051/cocv:2003005 LA - en ID - COCV_2003__9__135_0 ER -
%0 Journal Article %A Gori, Michele %A Maggi, Francesco %T On the lower semicontinuity of supremal functionals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 135-143 %V 9 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2003005/ %R 10.1051/cocv:2003005 %G en %F COCV_2003__9__135_0
Gori, Michele; Maggi, Francesco. On the lower semicontinuity of supremal functionals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 135-143. doi: 10.1051/cocv:2003005
[1] , and, The class of functionals which can be represented by a supremum. J. Convex Anal. 9 (to appear). | Zbl | MR
[2] , New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL 11 (1987) 1-42. | Zbl | MR
[3] , Minimization problems for the functional sup . Ark. Mat. 6 (1965) 33-53. | Zbl | MR
[4] , Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. | Zbl | MR
[5] , Minimization problems for the functional sup II. Ark. Mat. 6 (1969) 409-431. | Zbl | MR
[6] , Minimization problems for the functional sup III. Ark. Mat. 7 (1969) 509-512. | Zbl | MR
[7] , and, Lower semicontinuity of functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. | Numdam | Zbl | MR | EuDML
[8] and, Calculus of variations in . Appl. Math. Optim. 35 (1997) 237-263. | Zbl | MR
[9] , Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). | Zbl | MR
[10] and, Some properties of -limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1-60. | Zbl | MR
[11] , Integral representation on of -limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. | Zbl | MR | EuDML
[12] , Teoremi di semicontinuità nel calcolo delle variazioni. Istituto Nazionale di Alta Matematica, Roma (1968).
[13] , and, On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. 74 (1983) 274-282. | Zbl | MR | EuDML
[14] , A counterexample for some lower semicontinuity results. Math. Z. 162 (1978) 241-243. | Zbl | MR | EuDML
[15] and, Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617-635. | Zbl | MR
[16] and, On lower semicontinuity and relaxation. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 519-565. | Zbl | MR
[17] , and, On some sharp lower semicontinuity condition in . Differential Integral Equations (to appear). | Zbl | MR
[18] and, An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal. 9 (2002) 1-28. | Zbl
[19] , On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 (1977) 521-538. | Zbl | MR
[20] , La méthode métrique en calcul des variations. Hermann, Paris (1941). | Zbl | JFM
[21] , On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. | Zbl | MR
Cité par Sources :





