We consider minimization problems of the form where is a bounded convex open set, and the Borel function is assumed to be neither convex nor coercive. Under suitable assumptions involving the geometry of and the zero level set of , we prove that the viscosity solution of a related Hamilton-Jacobi equation provides a minimizer for the integral functional.
Keywords: calculus of variations, existence, non-convex problems, non-coercive problems, viscosity solutions
@article{COCV_2003__9__125_0,
author = {Crasta, Graziano and Malusa, Annalisa},
title = {Geometric constraints on the domain for a class of minimum problems},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {125--133},
year = {2003},
publisher = {EDP Sciences},
volume = {9},
doi = {10.1051/cocv:2003003},
mrnumber = {1957093},
zbl = {1066.49003},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2003003/}
}
TY - JOUR AU - Crasta, Graziano AU - Malusa, Annalisa TI - Geometric constraints on the domain for a class of minimum problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 125 EP - 133 VL - 9 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2003003/ DO - 10.1051/cocv:2003003 LA - en ID - COCV_2003__9__125_0 ER -
%0 Journal Article %A Crasta, Graziano %A Malusa, Annalisa %T Geometric constraints on the domain for a class of minimum problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 125-133 %V 9 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2003003/ %R 10.1051/cocv:2003003 %G en %F COCV_2003__9__125_0
Crasta, Graziano; Malusa, Annalisa. Geometric constraints on the domain for a class of minimum problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 125-133. doi: 10.1051/cocv:2003003
[1] and, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997). | Zbl
[2] , Solutions de viscosité des équations de Hamilton-Jacobi. Springer Verlag, Berlin (1994). | Zbl
[3] and, A non-convex variational problem related to change of phase. Appl. Math. Optim. 21 (1990) 113-138. | Zbl | MR
[4] ,, and, Geometric restrictions for the existence of viscosity solutions. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 189-220. | Zbl | MR | Numdam
[5] , Some scalar and vectorial problems in the Calculus of Variations, Ph.D. Thesis. SISSA, Trieste (1997).
[6] and, Existence and non existence of solutions to a variational problem on a square. Houston J. Math. 24 (1998) 345-375. | Zbl | MR
[7] , and, Existence of solutions for a class of non convex minimum problems. Math. Z. 228 (1998) 177-199. | Zbl | MR
[8] , Minimizing a functional depending on and on . Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997) 339-352. | Zbl | MR | Numdam
[9] and, On minima of radially symmetric functionals of the gradient. Nonlinear Anal. 23 (1994) 239-249. | Zbl | MR
[10] , On the minimum problem for a class of non-coercive non-convex variational problems. SIAM J. Control Optim. 38 (1999) 237-253. | Zbl | MR
[11] , Existence, uniqueness and qualitative properties of minima to radially symmetric non-coercive non-convex variational problems. Math. Z. 235 (2000) 569-589. | Zbl | MR
[12] and, Euler-Lagrange inclusions and existence of minimizers for a class of non-coercive variational problems. J. Convex Anal. 7 (2000) 167-181. | Zbl
[13] and, Non-convex minimization problems for functionals defined on vector valued functions. J. Math. Anal. Appl. 254 (2001) 538-557. | Zbl | MR
[14] and, Existence of minimizers for non-quasiconvex integrals. Arch. Rational Mech. Anal. 131 (1995) 359-399. | Zbl | MR
[15] , and, Analysis and numerical studies of a problem of shape design. Arch. Rational Mech. Anal. 114 (1991) 349-363. | Zbl | MR
[16] and, Optimal design and relaxation of variational problems, I, II and III. Comm. Pure Appl. Math. 39 (1976) 113-137, 139-182, 353-377. | Zbl | MR
[17] , Generalized solutions of Hamilton-Jacobi equations. Pitman, London, Pitman Res. Notes Math. Ser. 69 (1982). | Zbl
[18] and, Existence theorems for nonconvex problems J. Math. Pures Appl. 62 (1983) 349-359. | Zbl | MR
[19] , Convex Analysis. Princeton Univ. Press, Princeton (1970). | Zbl
[20] , An existence result for a class of non convex problems of the Calculus of Variations. J. Convex Anal. 5 (1998) 31-44. | Zbl | MR
[21] , A variational problem on subsets of . Proc. Roy. Soc. Edinburg Sect. A 127 (1997) 1089-1101. | Zbl | MR
Cité par Sources :






