Lower semicontinuity results are obtained for multiple integrals of the kind , where is a given positive measure on , and the vector-valued function belongs to the Sobolev space associated with . The proofs are essentially based on blow-up techniques, and a significant role is played therein by the concepts of tangent space and of tangent measures to . More precisely, for fully general , a notion of quasiconvexity for along the tangent bundle to , turns out to be necessary for lower semicontinuity; the sufficiency of such condition is also shown, when belongs to a suitable class of rectifiable measures.
Keywords: Borel measures, tangent properties, lower semicontinuity
@article{COCV_2003__9__105_0,
author = {Fragal\`a, Ilaria},
title = {Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {105--124},
year = {2003},
publisher = {EDP Sciences},
volume = {9},
doi = {10.1051/cocv:2003002},
mrnumber = {1957092},
zbl = {1066.49009},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2003002/}
}
TY - JOUR AU - Fragalà, Ilaria TI - Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2003 SP - 105 EP - 124 VL - 9 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2003002/ DO - 10.1051/cocv:2003002 LA - en ID - COCV_2003__9__105_0 ER -
%0 Journal Article %A Fragalà, Ilaria %T Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals %J ESAIM: Control, Optimisation and Calculus of Variations %D 2003 %P 105-124 %V 9 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2003002/ %R 10.1051/cocv:2003002 %G en %F COCV_2003__9__105_0
Fragalà, Ilaria. Lower semicontinuity of multiple $\sf \mu $-quasiconvex integrals. ESAIM: Control, Optimisation and Calculus of Variations, Tome 9 (2003), pp. 105-124. doi: 10.1051/cocv:2003002
[1] and, Semicontinuity problems in the Calculus of Variations. Arch. Rational Mech. Anal. 86 (1984) 125-145. | Zbl | MR
[2] , Introduzione alla Teoria Geometrica della Misura e Applicazioni alle Superfici Minime, Lectures Notes. Scuola Normale Superiore, Pisa (1996). | Zbl
[3] , On the lower-semicontinuity of quasi-convex integrals in SBV. Nonlinear Anal. 23 (1994) 405-425. | Zbl | MR
[4] , and, Lower-semicontinuity problems in Sobolev spaces with respect to a measure. J. Math. Pures Appl. 75 (1996) 211-224. | Zbl | MR
[5] and, -quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225-253. | Zbl | MR
[6] and, Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. 3 (2001) 139-168. | Zbl
[7] , and, Mean curvature of a measure and related variational problems. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. IV XXV (1997) 179-196. | Zbl | MR | Numdam
[8] , and, Convergence of Sobolev spaces on varying manifolds. J. Geom. Anal. 11 (2001) 399-422. | Zbl | MR
[9] , and, Energies with respect to a measure and applications to low dimensional structures. Calc. Var. Partial Differential Equations 5 (1997) 37-54. | Zbl | MR
[10] and, Homogenization of thin structures by two-scale method with respect to measures. SIAM J. Math. Anal. 32 (2001) 1198-1126. | Zbl | MR
[11] and, Homogenization of elastic thin structures: A measure-fattening approach. J. Convex. Anal. (to appear). | Zbl | MR
[12] , Semicontinuity, -convergence and Homogenization for Multiple Integrals, Lectures Notes. SISSA, Trieste (1994).
[13] , Semicontinuity, Relaxation, and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). | Zbl | MR
[14] , Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin, Appl. Math. Sci. 78 (1988). | Zbl | MR
[15] and, Measure Theory and Fine Properties of Functions. CRC Press, Ann Harbor, Stud. in Adv. Math. (1992). | Zbl | MR
[16] , Geometric Measure Theory. Springer-Verlag, Berlin (1969). | Zbl | MR
[17] and, Quasi-convex integrands and lower semicontinuity in . SIAM J. Math. Anal. 23 (1992) 1081-1098. | Zbl | MR
[18] and, On some notions of tangent space to a measure. Proc. Roy. Soc. Edinburgh 129A (1999) 331-342. | Zbl | MR
[19] and, Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000). | Zbl | MR
[20] and, Sobolev meets Poincaré. C. R. Acad. Sci. Paris 320 (1995) 1211-1215. | Zbl | MR
[21] , On lower semicontinuity of integral functionals I and II. SIAM J. Contol Optim. 15 (1997) 521-538 and 991-1000. | Zbl | MR
[22] , Lower semicontinuity in spaces of weakly differentiable functions. J. Math. Ann. 313 (1999) 653-710. | Zbl | MR
[23] , Lower semicontinuity of quasiconvex integrals. Manuscripta Math. 85 (1994) 419-428. | Zbl | MR
[24] , Contributions à une approche générale de la régularisation variationnelle de fonctionnelles intégrales, Thèse de Doctorat. Université de Montpellier II (1999).
[25] , Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscripta Math. 51 (1985) 1-28. | Zbl | MR
[26] and, On the existence of minima of multiple integrals in the Calculus of Variations. J. Math. Pures Appl. 62 (1983) 1-9. | Zbl | MR
[27] , Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, London (1995). | Zbl | MR
[28] , Multiple Integrals in the Calculus of Variations. Springer-Verlag, Berlin (1966). | Zbl | MR
[29] , Weak lower semicontuity of integral functionals. J. Optim. Theory Appl. 19 (1976) 3-16. | Zbl | MR
[30] , A measure with a large set of tangent measures. Proc. Amer. Math. Soc. 123 (1995) 2217-2221. | Zbl
[31] , Geometry of measures on : Distribution, rectifiability and densities. Ann. Math. 125 (1987) 573-643. | Zbl | MR
[32] , Lectures on Geometric Measure Theory. Australian Nat. Univ., Proc. Centre for Math. Anal. 3 (1983). | Zbl | MR
[33] , Multiapplications mesurables à valeurs convexes compactes. J. Math. Pures Appl. 50 (1971) 265-297. | Zbl | MR
[34] , On an extension and an application of the two-scale convergence method. Mat. Sb. 191 (2000) 31-72. | Zbl | MR
Cité par Sources :





