We consider a 1-D tank containing an inviscid incompressible irrotational fluid. The tank is subject to the control which consists of horizontal moves. We assume that the motion of the fluid is well-described by the Saint-Venant equations (also called the shallow water equations). We prove the local controllability of this nonlinear control system around any steady state. As a corollary we get that one can move from any steady state to any other steady state.
Keywords: controllability, hyperbolic systems, shallow water
@article{COCV_2002__8__513_0,
author = {Coron, Jean-Michel},
title = {Local controllability of a {1-D} tank containing a fluid modeled by the shallow water equations},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {513--554},
year = {2002},
publisher = {EDP Sciences},
volume = {8},
doi = {10.1051/cocv:2002050},
mrnumber = {1932962},
zbl = {1071.76012},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002050/}
}
TY - JOUR AU - Coron, Jean-Michel TI - Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 513 EP - 554 VL - 8 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002050/ DO - 10.1051/cocv:2002050 LA - en ID - COCV_2002__8__513_0 ER -
%0 Journal Article %A Coron, Jean-Michel %T Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 513-554 %V 8 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002050/ %R 10.1051/cocv:2002050 %G en %F COCV_2002__8__513_0
Coron, Jean-Michel. Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 513-554. doi: 10.1051/cocv:2002050
[1] , Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992) 295-312. | Zbl | MR
[2] , Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris 317 (1993) 271-276. | Zbl
[3] , On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. 75 (1996) 155-188. | Zbl | MR
[4] , On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions. ESAIM: COCV 1 (1996) 35-75. | Zbl | Numdam
[5] and, Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary. Russian J. Math. Phys. 4 (1996) 429-448. | Zbl
[6] and, Methods of mathematical physics, II. Interscience publishers, John Wiley & Sons, New York London Sydney (1962). | Zbl | MR
[7] , Nonlinear water waves. Academic Press, San Diego (1994). | Zbl | MR
[8] , and, Motion planning and nonlinear simulations for a tank containing a fluid, ECC 99.
[9] and, Exact controllability of the Navier-Stokes and Boussinesq equations. Russian Math. Surveys. 54 (1999) 565-618. | Zbl
[10] , Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I 325 (1997) 987-992. | Zbl
[11] , Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1-44. | Zbl | MR | Numdam
[12] , Lectures on nonlinear hyperbolic differential equations. Springer-Verlag, Berlin Heidelberg, Math. Appl. 26 (1997). | Zbl | MR
[13] , On the controllability of the Burgers equation. ESAIM: COCV 3 (1998) 83-95. | Zbl | MR | Numdam
[14] , Are there connections between turbulence and controllability?, in 9th INRIA International Conference. Antibes (1990).
[15] , Exact controllability for distributed systems. Some trends and some problems, in Applied and industrial mathematics, Proc. Symp., Venice/Italy 1989. D. Reidel Publ. Co. Math. Appl. 56 (1991) 59-84. | Zbl | MR
[16] , On the controllability of distributed systems. Proc. Natl. Acad. Sci. USA 94 (1997) 4828-4835. | Zbl | MR
[17] and, Approximate controllability of a hydro-elastic coupled system. ESAIM: COCV 1 (1995) 1-15. | Zbl | MR | Numdam
[18] and, Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV 26 (1998) 605-621. | Zbl | Numdam
[19] Li Ta Tsien and Yu Wen-Ci, Boundary value problems for quasilinear hyperbolic systems. Duke university, Durham, Math. Ser. V (1985). | Zbl
[20] , Compressible fluid flow and systems of conservation laws in several space variables. Sringer-Verlag, New York Berlin Heidelberg Tokyo, Appl. Math. Sci. 53 (1984). | Zbl | MR
[21] and, Dynamics and solutions to some control problems for water-tank systems. Preprint, CIT-CDS 00-004. | MR
[22] , Théorie du mouvement non permanent des eaux, avec applications aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 53 (1871) 147-154. | JFM
[23] , Systèmes de lois de conservations, I et II. Diderot Éditeur, Arts et Sciences, Paris, New York, Amsterdam (1996). | MR
[24] , Control of systems without drift via generic loops. IEEE Trans. Automat. Control. 40 (1995) 1210-1219. | Zbl | MR
Cité par Sources :






