Let be a parabolic second order differential operator on the domain Given a function and such that the support of is contained in , we let be the solution to the equation:
Keywords: inverse problems, Carleman estimates, barrier option hedging, replication
@article{COCV_2002__8__127_0,
author = {Bardos, Claude and Douady, Rapha\"el and Fursikov, Andrei},
title = {Static hedging of barrier options with a smile : an inverse problem},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {127--142},
year = {2002},
publisher = {EDP Sciences},
volume = {8},
doi = {10.1051/cocv:2002040},
mrnumber = {1932947},
zbl = {1063.91028},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002040/}
}
TY - JOUR AU - Bardos, Claude AU - Douady, Raphaël AU - Fursikov, Andrei TI - Static hedging of barrier options with a smile : an inverse problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 127 EP - 142 VL - 8 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002040/ DO - 10.1051/cocv:2002040 LA - en ID - COCV_2002__8__127_0 ER -
%0 Journal Article %A Bardos, Claude %A Douady, Raphaël %A Fursikov, Andrei %T Static hedging of barrier options with a smile : an inverse problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 127-142 %V 8 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002040/ %R 10.1051/cocv:2002040 %G en %F COCV_2002__8__127_0
Bardos, Claude; Douady, Raphaël; Fursikov, Andrei. Static hedging of barrier options with a smile : an inverse problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 8 (2002), pp. 127-142. doi: 10.1051/cocv:2002040
[1] , and, Static Replication of Barrier Options: Some General Results. Preprint Gen. Re Fin. Prod. (2000).
[2] and, Managing the Volatility Risk of Portfolio of Derivative Securities: The Lagrangian Uncertain Volatility Model. Appl. Math. Finance 3 (1996) 21-52. | Zbl
[3] , and, Static Hedging of Barrier Options with a Smile: An Inverse Problem, Preprint CMLA No. 9810. École Normale Supérieure de Cachan (1998).
[4] and, The Pricing of Options and Corporate Liabilities. J. Polit. Econ. 81 (1973) 637-654. | Zbl
[5] and, Breaking Barriers. RISK (1997) 139-145.
[6] , and, Static Hedging of Exotic Options. J. Finance (1998) 1165-1190.
[7] , and, European Option Pricing with Transaction Costs. SIAM J. Control Optim. 3 (1993) 470-493. | Zbl | MR
[8] and, Riding on a Smile. Risk Mag. (1994) 32-39.
[9] and, Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility. Int. J. Theor. Appl. Finance 1 (1998) 61-110. | Zbl
[10] , Closed Form Formulas for Exotic Options and their Lifetime Distribution. Int. J. Theor. Appl. Finance 2 (1998) 17-42. | MR
[11] , Couverture dynamique en présence d'imperfections, Ph.D. Thesis. Univ. Paris I (1997).
[12] , Pricing and Hedging with Smiles in Mathematics of Derivative Securities, edited by M.A.H. Dempster and S.R. Pliska. Cambridge Univ. Press, Cambridge (1997) 103-111. | Zbl | MR
[13] , A Unified Theory of Volatility, Preprint. Paribas Capital Markets (1995).
[14] , Partial differential equations of parabolic type. Prentice-hall, Inc. Englewood Cliffs, N.Y. (1964). | Zbl | MR
[15] , Lagrange principle for problems of optimal control of ill-posed or singular distributed systems. J. Math. Pures Appl. 71 (1992) 139-194. | Zbl | MR
[16] and, On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse 11 (1993) 205-232. | Zbl | Numdam
[17] and, Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary. Math. Sbornik. 187 (1996).
[18] , Linear partial differential operators. Springer-Verlag, Berlin (1963). | Zbl | MR
[19] , Évaluation et couverture des options exotiques, Working paper. Univ. Paris VI (1997).
[20] and, Méthode de quasi-réversibilité et applications. Dunod, Paris (1967). | Zbl | MR
[21] , Theory of Rational Option Pricing. Bell J. Econ. Manag. Sci. 4 (1973) 141-183. | MR
[22] , Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod Gauthier-Villars, Paris (1968). | Zbl | MR
[23] , Exotic Options, Finance Working Paper No. 220. U.C. Berkeley (1991).
[24] , On the Controllability Problem Arising in Financial Mathematics. J. Dynam. Control. Syst. 6 (2000) 353-363. | Zbl | MR
[25] , Dynamic Hedging: Managing Vanilla and Exotic Options. J. Wiley & Sons, New York (1997).
[26] , Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures Appl. 75 (1996) 367-408. | Zbl | MR
[27] , Partial Differential Equations II. Springer-Verlag, Berlin (1991). Related papers not cited in the article | Zbl
[28] , Pricing and Hedging Barrier and Forward Start Options Using Static Replication, Working paper. ING Barings (1997).
[29] and, Risk Management Using Static Hedging, Working paper. Courant Institute, N.Y.U. (2001).
[30] and, Static Barriers. RISK (2000) 120-122.
[31] and, A Comparison of Alternative Methods for Hedging Exotic Options, Working paper. FORC (1997).
[32] , Static Hedging: A Genetic Algorithms Approach. Working paper (1999).
[33] and, Static Simplicity. RISK (1994) 44-50.
[34] , and, Robust Hedging of Barrier Options. Math. Finance 11 (2000) 285-314. | Zbl | MR
[35] and, Static Hedging of Timing Risk. J. Derivatives (1999) 57-66.
[36] and, Static Hedging of Complex Barrier Options, Working paper. Courant Institute, N.Y.U. (1998).
[37] and, A Uniform Approach to Static Replication. J. Risk Fall (1998) 73-86.
[38] , and, Pricing, No-arbitrage Bounds and Robust Hedging of Installment Options, Working paper. Tech. Univ. Vienna, Austria (2000). | MR
[39] , and, Forever Hedged RISK (1995) 139-145.
[40] , and, Static Option Replication. J. Derivatives 2 (1995) 78-85.
[41] and, Working paper. Univ. Paris VII (1997).
[42] , First...Then...Knock-out Options. Wilmott Mag. (2001).
[43] , Barrier Put-Call Transformations, Working paper. Paloma Partners (1999).
[44] and, Static Replication of Interest Rate Contingent Claims, Master Thesis. M.I.T. (1997).
[45] , Robust Hedging of the Lookback Option. Finance and Stochastics 2 (1998) 329-347. | Zbl
[46] and, An Efficien and General Method to Value American-style Equity and FX Options in the Presence of User-defined Smiles and Time-dependent Volatility, Working paper. NatWest (1999).
[47] , Financial Risk Management: Dynamic vs. Static Hedging. Global Bus. Econ. Rev. I (1999) 60-75.
[48] , A Time-space Hedging Theory, Working paper. Univ. Paris VI (2001).
[49] , A General Treatment of Barrier Options and Semi-static Hedges of Double Barrier Options, Working paper. Tilburg Univ. (2000).
[50] , Semi-static Hedging of Double Barrier Options, Working paper. Tilburg Univ. (2000).
[51] , Exotic Options II in Handbbok of Risk Management, Chap. 4, edited by C. Alexander (1998).
[52] , Barrier Options: Evaluation and Hedging, Dissertation. Aarhus Univ. (1998).
[53] and, How Well Can Barrier Options be Hedged by a Static Portfolio of Standard Options? J. Fin. Engrg. 7 (1998) 147-175.
[54] , Static vs. Dynamic Hedging of Exotic Options: An Evaluation of Hedge Performance via Simulation. Net Exposure 2 (1997) 1-36.
Cité par Sources :






