We consider the weak closure of the set of all feasible pairs (solution, flow) of the family of potential elliptic systems
Keywords: quasilinear elliptic system, relaxation, A-quasiconvex envelope
@article{COCV_2002__7__309_0,
author = {Raitums, Uldis},
title = {Relaxation of quasilinear elliptic systems via {A-quasiconvex} envelopes},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {309--334},
year = {2002},
publisher = {EDP Sciences},
volume = {7},
doi = {10.1051/cocv:2002014},
mrnumber = {1925032},
zbl = {1037.49011},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002014/}
}
TY - JOUR AU - Raitums, Uldis TI - Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2002 SP - 309 EP - 334 VL - 7 PB - EDP Sciences UR - https://www.numdam.org/articles/10.1051/cocv:2002014/ DO - 10.1051/cocv:2002014 LA - en ID - COCV_2002__7__309_0 ER -
%0 Journal Article %A Raitums, Uldis %T Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes %J ESAIM: Control, Optimisation and Calculus of Variations %D 2002 %P 309-334 %V 7 %I EDP Sciences %U https://www.numdam.org/articles/10.1051/cocv:2002014/ %R 10.1051/cocv:2002014 %G en %F COCV_2002__7__309_0
Raitums, Uldis. Relaxation of quasilinear elliptic systems via A-quasiconvex envelopes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 309-334. doi: 10.1051/cocv:2002014
[1] , and, Regularity of quasiconvex envelopes, Preprint No. 72/1999. Max-Planck Institute für Mathematik in der Naturwissenschaften, Leipzig (1999). | Zbl | MR
[2] , Direct Methods in the Calculus of Variations. Springer: Berlin, Heidelberg, New York (1989). | Zbl | MR
[3] and, A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. | Zbl | MR
[4] and, Optimal design and relaxation of variational problems, Parts I-III. Comm. Pure Appl. Math. 39 (1986) 113-137, 138-182, 353-377. | Zbl
[5] , and, Regularization of optimal problems of design of bars and plates, Parts 1 and 2. JOTA 37 (1982) 499-543. | Zbl | MR
[6] and, On -regularity of functions that define G-closure. Z. Anal. Anwendungen 20 (2001) 203-214. | Zbl | MR
[7] , Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Super. Pisa 8 (1981) 69-102. | Zbl | MR | Numdam
[8] , Properties of optimal control problems for elliptic equations, edited by W. Jäger et al., Partial Differential Equations Theory and Numerical Solutions. Boca Raton: Chapman & Hall/CRC, Res. Notes in Math. 406 (2000) 290-297. | Zbl | MR
[9] , An introduction to the homogenization method in optimal design. CIME Summer Course. Troia (1998). http://www.math.cmu.edu/cna/publications.html | Zbl
[10] , and, Homogenization of Differential Operators and Integral Functionals. Springer: Berlin, Hedelberg, New York (1994). | Zbl | MR
Cité par Sources :





