We consider the problem of minimizing the energy
Keywords: special functions of bounded variation, level sets, lower semicontinuity, $\Gamma $-limit
@article{COCV_2002__7__223_0,
author = {Barroso, Ana Cristina and Matias, Jos\'e},
title = {On a volume constrained variational problem in {SBV}${^2(\Omega )}$ : part {I}},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
pages = {223--237},
year = {2002},
publisher = {EDP Sciences},
volume = {7},
doi = {10.1051/cocv:2002009},
mrnumber = {1925027},
zbl = {1047.49016},
language = {en},
url = {https://www.numdam.org/articles/10.1051/cocv:2002009/}
}
TY - JOUR
AU - Barroso, Ana Cristina
AU - Matias, José
TI - On a volume constrained variational problem in SBV${^2(\Omega )}$ : part I
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
SP - 223
EP - 237
VL - 7
PB - EDP Sciences
UR - https://www.numdam.org/articles/10.1051/cocv:2002009/
DO - 10.1051/cocv:2002009
LA - en
ID - COCV_2002__7__223_0
ER -
%0 Journal Article
%A Barroso, Ana Cristina
%A Matias, José
%T On a volume constrained variational problem in SBV${^2(\Omega )}$ : part I
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2002
%P 223-237
%V 7
%I EDP Sciences
%U https://www.numdam.org/articles/10.1051/cocv:2002009/
%R 10.1051/cocv:2002009
%G en
%F COCV_2002__7__223_0
Barroso, Ana Cristina; Matias, José. On a volume constrained variational problem in SBV${^2(\Omega )}$ : part I. ESAIM: Control, Optimisation and Calculus of Variations, Tome 7 (2002), pp. 223-237. doi: 10.1051/cocv:2002009
[1] , A compactness theorem for a special class of functions of bounded variation. Boll. Un. Mat. Ital. 3-B (1989) 857-881. | Zbl | MR
[2] ,, and, On a volume constrained variational problem. Arch. Rat. Mech. Anal. 149 (1999) 23-47. | Zbl | MR
[3] , and, An optimization problem with volume constraint. SIAM J. Control Optim. 24 (1986) 191-198. | Zbl | MR
[4] and, Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325 (1981) 105-144. | Zbl | MR
[5] and, Integral representation results for functionals defined on . J. Math. Pures Appl. 75 (1996) 595-626. | Zbl
[6] and, On the existence of solutions to a problem in multidimensional segmentation. Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1991) 175-195. | Zbl | MR | Numdam
[7] and, Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei 82 (1988) 199-210. | Zbl | MR
[8] , An Introduction to -convergence. Birkhäuser (1993). | Zbl | MR
[9] and, Measure Theory and Fine Properties of Functions. CRC Press, Stud. Adv. Math. (1992). | Zbl | MR
[10] , Minimal Surfaces and Functions of Bounded Variation. Birkhäuser (1984). | Zbl | MR
[11] , and, Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996) 815-831. | Zbl | MR
[12] , On a constrained variational problem with an arbitrary number of free boundaries. Interf. Free Boundaries 2 (2000) 201-212. | Zbl | MR
[13] , Weakly Differentiable Functions. Springer-Verlag (1989). | Zbl | MR
Cité par Sources :





